
Crowd-Powered Parameter Analysis
for Visual Design Exploration

Yuki Koyama Daisuke Sakamoto Takeo Igarashi
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
koyama@is.s.u-tokyo.ac.jp, {d.sakamoto, takeo}@acm.org

Not Good Good

Parameter Space Suggested Designs

Visualization

User’s Edit

Interactive
Optimization

Visualization

User’s Edit

Interactive
Optimization

Figure 1. Two interfaces for visual design exploration that are realized by our analysis technique. (Left) Smart Suggestion: The user can obtain
appropriate parameter sets as suggestions. (Right) VisOpt Slider: The user can adjust each parameter effectively by the visualization (Vis) near the
slider and the optimization (Opt) that gently guides the current parameters to the optimal direction.

ABSTRACT
Parameter tweaking is one of the fundamental tasks in the
editing of visual digital contents, such as correcting photo
color or executing blendshape facial expression control. A
problem with parameter tweaking is that it often requires
much time and effort to explore a high-dimensional param-
eter space. We present a new technique to analyze such high-
dimensional parameter space to obtain a distribution of hu-
man preference. Our method uses crowdsourcing to gather
pairwise comparisons between various parameter sets. As a
result of analysis, the user obtains a goodness function that
computes the goodness value of a given parameter set. This
goodness function enables two interfaces for exploration:
Smart Suggestion, which provides suggestions of preferable
parameter sets, and VisOpt Slider, which interactively visual-
izes the distribution of goodness values on sliders and gently
optimizes slider values while the user is editing. We created
four applications with different design parameter spaces. As
a result, the system could facilitate the user’s design explo-
ration.

Author Keywords
Crowd-powered parameter analysis; parameter tweaking;
design exploration; human computation;

c© Owner/Author 2014. This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record was
published in Proc. UIST ’14.
http://dx.doi.org/10.1145/2642918.2647386

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces - Graphical user interfaces; I.3.6. Computer
Graphics: Methodology and Techniques - Interaction tech-
niques

INTRODUCTION
Exploring possible visual designs by tweaking parameters is
a common practice when designing digital content. For ex-
ample, if we want to clean up a photo for use at the top of a
Web page, we first open the photo in Photoshop or GIMP, and
then adjust the parameters—brightness, contrast, saturation,
etc.—to explore which combination of parameters provides
the best result. Similarly, when game developers create a 3D
game scene, even for a simple scene, they have to adjust tens
of hundreds of parameters—light positions, character posi-
tions, expressions, poses, colors of objects, values of shader
parameters, etc.—that define the visual quality of the game.

These parameter-tweaking tasks can essentially be considered
part of an iterative optimization process. In other words, we
iteratively adjust the parameters of the visual design, and then
evaluate the results. This process is often tedious and time-
consuming, especially when there are a lot of parameters to
adjust, and the high dimensionality of the space of the param-
eters makes it exponentially difficult to explore all possible
ones. Moreover, unfamiliar parameters can be puzzling be-
cause we cannot predict their effect.

We present a method to facilitate parameter tweaking for vi-
sual design exploration. In the proposed approach, we use
crowdsourcing to gather pairwise comparisons between var-
ious parameter sets. Users first specify an input parameter
set and goodness criteria for a target application. The system

1

then analyzes the parameter space using crowd workers and
obtains a goodness function, which is a function that takes a
parameter set as an input and computes how good it is. We
then use the goodness function for two interfaces: Smart Sug-
gestion and VisOpt Slider. Smart Suggestion is an interface
that provides users with appropriate parameter set choices as
suggestions. VisOpt Slider is an extension of the conventional
slider component, in which the distribution of goodness val-
ues is directly visualized on sliders, and it can interactively
update the visualization on the basis of the currently chosen
slider values. The slider values are interactively and contin-
uously optimized to a better direction as the user is editing.
These two interfaces are complementary; e.g., a user can first
obtain a reasonable starting point by Smart Suggestion, and
then interactively tunes it up using VisOpt Slider.

In this work we offer two primary contributions:

• A method of assisting design exploration using a goodness
function derived from analyzing design parameter space
via on-demand crowdsourcing.

• Two specific user interfaces, Smart Suggestion and VisOpt
Slider, which utilize the derived goodness function and en-
able users to effectively explore the parameter space.

To evaluate our method, we performed experiments with four
applications: photo color correction (6 parameters), camera
and light control in a 3D scene (8 parameters), shader (8 pa-
rameters), and blendshape facial expression (53 parameters).
We checked the quality of analysis, and conducted an infor-
mal user study of our interfaces.

RELATED WORK

Crowd-Powered Analysis
Crowdsourcing is an emerging paradigm whereby we can sta-
bly employ a large number of temporary workers (crowd)
through the Internet. From the viewpoint of human computa-
tion [15], we can consider this new platform a resource of hu-
man processors whereby we can easily obtain large amounts
of human-processed data for analysis on demand, which pre-
viously had required temporally- and monetary-high cost.

One of the notable benefits of using crowds as human proces-
sors is that we can exploit popular human perception. Gin-
gold et al. [6] introduced a technique for applying the per-
ception of a crowd to the analysis of 2D images. Chaud-
huri et al. [5] proposed AttribIt, an interface using seman-
tic attributes for designing visual content, where they utilized
crowds to learn the semantic attributes of design components.
We also utilize crowds as human processors for analysis. Our
goal is to analyze a design space that has been formed by
continuous design parameters, and then use the results of the
analysis for interfaces.

Secord et al. [19] analyzed the viewpoint preference when
viewing 3D shapes, through a large perceptual user study con-
ducted on a crowdsourcing platform. Their approach was to
create a generalized model to predict the viewpoint prefer-
ence of (even) unknown content while using domain-specific
features. Reinecke et al. [17, 16] presented a perceptual
model of aesthetics for web design learned by crowdsourced

study, where they utilized the features specific to web design
for their computational model. In contrast to these works,
our goal is to deal with arbitrary design spaces and arbitrary
criteria, and to provide a model tailored for specific content.

Visual Parameter Tweaking
Parameter tweaking is a common process in various design
situations, and researchers have been tackling how to best
facilitate it for a long time. One of the most successful ap-
proaches is inverse design [29, 13, 24], in which the sys-
tem automatically computes the best-suited parameters from
a user-specified final desired look, considering it as an inverse
problem. However, this is not useful if the user does not have
any clear goal and rather wants to explore a range of possible
looks. Furthermore, this approach is often difficult to gener-
alize because solving an inverse problem requires knowledge
of the heuristics of each application. In contrast, our goals are
to achieve an algorithm that can be used with many applica-
tions and to facilitate user’s exploration.

Showing design options as suggestions or landmarks is an
effective way to facilitate design exploration. Many previ-
ous works have investigated this approach [11, 12, 7, 20,
9], and several tools, such as Photoshop’s Variations inter-
face1 and AfterEffects’ BrainStorming interface2, include this
function. One of our own interfaces, Smart Suggestion, fol-
lows this concept. However, unlike the above works/tools,
Smart Suggestion considers the goodness values estimated
using crowd preferences when generating suggestions. In
addition to showing suggestions, VisOpt Sliders provide in-
formed exploration (guidance) around a selected sample.

Side Views [26] and Parallel Paths [27] enable fast “visits” of
possible designs by showing visual designs along with GUI
widgets such as sliders, then the user can efficiently evaluate
which parameter is good or not good. In contrast, our ap-
proach enables users to avoid visits of meaningless designs by
showing goodness values instead of “raw” designs. Scented
Widgets [28] also shows “raw” data that the user should eval-
uate according to their situations. In contrast, our VisOpt
Slider shows the distribution of explore-worthy parameters
that directly guides user’s exploration.

As an interface that utilizes the preferences of many peo-
ple, Talton et al. [23] presented a parametric modeling tool
that “knows” a good design space (called collaborative de-
sign space) thanks to the collaboration of many people. The
main difference is that our work is designed for “on-demand
crowdsourcing,” or human computation, for specific target
problem instance, while their work is designed for collabo-
rative exploration. Their system collects final modeling re-
sults by dedicated users, so it takes time (e.g. a year). On the
other hand, our system only requires the workers to “com-
pare” instances as microtasks, so it is much easier to get many
contributors (workers). Xu et al. [30] also proposed a design
system using collective knowledge. Their purpose of using
collective knowledge is to get feedback for a certain design,
while ours is to analyze the entire design space.

1http://www.adobe.com/products/photoshop/
2http://www.adobe.com/products/aftereffects/

2

http://www.adobe.com/products/photoshop/
http://www.adobe.com/products/aftereffects/

CROWD-POWERED PARAMETER ANALYSIS

Overview of the Process
Our approach employs a crowdsourcing platform to analyze
parameters to support the tweaking of visual design param-
eters. The definition of a parameter set in this paper is an
n-dimensional vector x ∈ Rn that consists of n continuous
parameters xi ∈ [0, 1] for i = 1, . . . , n. Note that we do not
deal with discrete parameters such as font or layout selection.
We assume that the final form of a design task can be visu-
alized as a 2D image I and that given a parameter set x, the
design software deterministically provides an image, which
we describe as I(x). In other words, our target design tasks
can be completely parameterized by n parameters. This as-
sumption is true in many cases, especially in the final steps
of actual design processes. For example, when 3D game de-
velopers finish their implementation of game logic, the final
step of the game creation could be the parameter tuning of the
game scene visuals, such as the positions of game objects, the
lighting conditions, the camera pose, and the shader parame-
ters.

The goal of the analysis is to obtain a continuous scalar-
valued function, or a goodness function, f : Rn → R that
maps a parameter set to its estimated goodness; that is, to ob-
tain a function f that takes a parameter set x as input and
computes an estimated goodness value y = f(x) as output.
We define goodness as a continuous value from 0 to 1, where
1 is the most preferable and 0 is the least.

Our process to obtain a goodness function consists of four
steps, as shown in Figure 2. First, the system generates sam-
pling points on the high-dimensional parameter space (dis-
played here as 2-dimensional space). Second, using crowd-
sourcing, the system gathers pairwise comparisons of these
sampling points. Third, on the basis of this comparisons,
we analyze the goodness value for each (discrete) sampling
point. Fourth, the system interpolates the goodness values
and obtains a continuous scalar function, i.e., a goodness
function, as a result of the analysis.

Sampling
Parameter Sets

Gathering Pairwise
Comparisons

Estimating Goodness
Values of Points

Fitting a Goodness
Function

Figure 2. Overview of our algorithm of analysis.

Our method can be considered as one of the learning-from-
crowd problems [25, 19, 5], but the problem we are address-
ing here requires some special treatments. First, the data that
we deal with is a set of noisy relative scores between two
sampling points, not absolute goodness values. In addition,
the derived function is required to be very fast to compute
its value for a given parameter set to realize our interaction
techniques, and also required to be able to represent a highly
nonlinear distribution to deal with various design spaces. In
our understanding, any existing algorithm has not solved this

specific problem yet, and cannot be applied to our problem
without significant extensions.

Sampling Parameter Sets
First, the system samplesM parameter sets x1, . . . ,xM from
the parameter space for the later process of crowdsourcing.
To do this, we simply choose a random uniform sampling; the
system randomly picks a parameter set up from the parameter
space and then computes this process M times.

There might be smarter ways to sample parameter sets to
achieve more effective crowdsourcing. For example, Secord
et al. [19] took a nearby sampling approach, in which the
system samples pairs of parameter sets that are located near
to each other. However, nearby sampling requires empirical
knowledge of the parameter space, which prohibits us from
using it because we want to deal with various types of param-
eter spaces. Tamuz et al. [25] proposed a sophisticated adap-
tive sampling method for a crowd-powered analysis; how-
ever, their method cannot be directly applied for our problem
because it is not designed to derive a continuous scalar func-
tion as output. It might be possible to further improve our
results by using their adaptive sampling method, but the ran-
dom sampling works sufficiently well for our requirements.

Gathering Pairwise Comparisons by Crowdsourcing
The next step is to gather information on the goodness of each
sampling point. Because the goodness value is essentially
evaluated by human preference, we use a human computa-
tion technique based on crowdsourcing. A possible naı̈ve ap-
proach is to ask crowd workers to provide the absolute good-
ness values on sampling points directly; however, this is im-
practical because the concept of goodness is too abstract and
the measure scale depends on the individual.

Thus, we take a pairwise comparison approach [19, 6, 5] in
which crowd workers are shown a pair of designs and asked
to choose the best one. As a result, relative scores instead of
absolute ones are obtained. Unlike most of the previous ap-
proaches, we use the 5-pt Likert scale (1 to 5) to rate a design
pair, where 1 means one design of the two is definitely bet-
ter, 5 means the other design is definitely better, and 3 means
neutral. Our algorithm welcomes the neutral score, as it is
considered a constraint that the two parameter sets have the
same or nearly the same goodness values.

Let P be a set of pairs of indices {(1, 2), . . . , (M − 1,M)}.
For each (i, j) ∈ P , the system generates two images
I(xi), I(xj), shows the pair side by side to a crowd worker,
and asks him/her to rate its relative score. As a whole, the
system gathers M/2 relative scores, and each image is shown
and rated once.

The instruction of the micro-task for crowd workers is impor-
tant in terms of the quality of obtained data. Because the pur-
poses and contexts of using our system differ depending on
the situation, we prepare a template of instruction for users
rather than providing a fixed instruction. The template that
we used in our experimentation is:

Which of the two images of [noun] is more [adjective]?
For example, [clause]. Please choose the most appro-

3

priate one from the 5 options below.

In accordance with the purpose and the content, the user gives
a noun, an adjective (such as “good” or “natural”), and a
clause (which explains a concrete scenario to instruct crowd
workers more effectively). After this instruction, two images
and five options appear. These options are linked to the Lik-
ert scale; e.g., “the left image is definitely more [adjective]
than the right image” is for option 1, and the complete op-
posite is option 5. Option 3 is “these two images are equally
[adjective], or are equally not [adjective].” Figure 3 shows a
screen capture of the micro task that was actually used in our
experiments.

Figure 3. An example of the tasks used in our experiments. We took a
pairwise comparison approach.

To control the quality of the data, we take the duplicate ap-
proach, as do several of the previous works [19, 6, 5]. We first
asked 10 questions and then asked 10 more identical ques-
tions but with the arrangement of the two images flipped. If
the answer of a question contradicted the duplicated corre-
spondent, we simply discarded the answer. We also discarded
all answers from a particular crowd worker if more than half
the answers contradicted. This algorithm cannot detect if all
20 answers have been (lazily) rated as “3”, and so the system
checked such cases and discarded them if so.

In the remainder of this paper, we represent P ′ as a subset
of P , each of which have passed the quality check, M ′ as the
number of sampling points that have passed the quality check,
and Q = {q1, . . . , qM ′} as a set of indices of sampling points
that have passed the quality check.

Estimating Goodness Values of Sampling Points
Given the relative scores, the next goal is to compute the ab-
solute goodness values y = (yq1 , . . . , yqM′) of the sampling
points xq1 , . . . ,xqM′ . Sýkora et al. [22] dealt with a similar
problem where, given the relative orders of pairs of points,
the system estimates the entire consistent orders of all points.
The difference between their target problem and ours is the
existence of inconsistent relative orders; in our case, the so-
lution that satisfies all the relative orders does not generally
exist because the data is from unreliable crowds and is based
on human preference. Gingold et al. [6] presented a robust
algorithm for this problem, but it can only handle relative or-
ders of adjacent areas, and their 2D-based algorithm cannot
be extended to high-dimensional parameter space due to its
high computational cost.

Thus, we present a new formulation for this problem. We
consider a constraint based on the relative scores as a cost
function

Erelative(y) =
∑

(i,j)∈P ′

‖yi − yj − di,j‖2 , (1)

where di,j is an offset distance between the i-th and j-th
goodness values, defined as

di,j =

1 (relative score = 1)
0.5 (relative score = 2)
0 (relative score = 3)
−0.5 (relative score = 4)
−1 (relative score = 5)

. (2)

Considering only the relative constraint results in a discon-
nected, jagged distribution of goodness values (Figure 4, left).
This is undesirable because we are handling continuous pa-
rameter space, and thus we expect the goodness function to
also be continuous (Figure 4, right) and smooth in most cases.
We therefore add a constraint based on the assumption of con-
tinuity:

Econtinuous(y) =
∑
i∈Q

∥∥∥∥∥∥yi − 1

Ni

∑
j∈Ni

yj

∥∥∥∥∥∥
2

, (3)

where Ni stands for the neighborhoods of the i-th sampling
points, which are defined by 20-nearests in Euclidean dis-
tance. Note that this continuous constraint is popular in
Laplacian-related techniques such as smoothing [21] and thus
is beneficial for reducing data noise.

y

x

y

x
Without Continuity With Continuity

Figure 4. Constraint of continuity. This constraint ensures that the esti-
mated goodness values are continuously distributed.

Taking these two constraints into consideration, the system
solves the following minimization:

min
y

(Erelative(y) + ωEcontinuous(y)) , (4)

where ω > 0 is a parameter that defines the balance of these
two constraints. In all experiments introduced in this paper,
we set ω = 5.0. We can solve this minimization problem
as a simple linear algebraic equation. See the appendix for
specific details. After solving this minimization problem, we
linearly normalize the solution so that the maximum good-
ness value is 1 and the minimum is 0.

Fitting a Goodness Function
Our goal is now to obtain a continuous goodness function
from the obtained goodness values of the sampling points.
The fitted function needs to be efficient enough for use in
real-time visualization and optimization for user interfaces,

4

so we chose the Radial Basis Function (RBF) interpolation
technique for fitting, which is often used to smoothly in-
terpolate known values at various points (RBF centers) and
thus create a continuous function [3]. We use the param-
eter sets xq1 , . . . ,xqM′ as the locations of the RBF centers
and the obtained goodness values yq1 , . . . , yqM′ as the tar-
get values. That is, we represent the goodness function f as
f(x) =

∑
i∈Q wiφ(‖x − xi‖), where φ(·) is a radial basis

function, and w = (wq1 , . . . , wqM′) are the RBF weights that
we are going to compute. We used φ(r) = r as the basis
function but found the Gaussian also works well and does not
result in any significant differences.

The exact RBF interpolation scheme is not robust for dense,
noisy data. We therefore add a regularization term when com-
puting RBF weights [3]. Specifically, we solve the following
minimization problem to obtain w:

min
w

∑
i∈Q

∥∥∥∥∥∥
∑
j∈Q

wjφ (‖xi − xj‖)− yi

∥∥∥∥∥∥
2

+ λ‖w‖2 (5)

where λ ≥ 0 is the parameter for controlling regularization.
We set λ = 0.1 in this work. We found that this regulariza-
tion was able to avoid overfitting with our data. Optionally,
we compute the reduction of RBF centers [4] to improve com-
putational efficiency.

USER INTERFACE
We use the pararmeter analysis results to create two types of
user interface to facilitate parameter tweaking tasks and de-
sign exploration.

Smart Suggestion
Smart Suggestion is a
function that generates
nine parameter sets having
relatively high goodness
values and displays the
corresponding designs as
suggestions. This interface
facilitates design explo-
ration by giving users a
good starting point to find
a better parameter set for
the visual design.

Our current implementation takes a simple approach to gen-
erate quality suggestions: the system generates 2,000 param-
eter sets randomly and then selects the 9-best parameter sets
according to their goodness values. This simple algorithm in-
teractively provides suggestions of an adequate quality, which
enables users to re-generate suggestions quickly enough for
interactive use if none of the suggestions satisfy them. To
generate higher-quality suggestions, other techniques such as
diversity optimization [1] or the dispersion technique [11]
could be useful. However, we feel that it is better to avoid
spending too much time generating optimal suggestions, and
instead focus on interactively providing suggestions of suffi-
cient quality.

VisOpt Slider
The VisOpt Slider (Figure 1, left) displays bars with a “visual-
ization” (Vis) of the results of parameter analysis. The distri-
bution of goodness values is directly visualized on each slider
using color mapping, which navigates the user to tweak pa-
rameters. When the “optimization” (Opt) is turned on, the pa-
rameters are automatically and interactively optimized while
the user is dragging a slider. For example, a user drags a
slider, and then the other sliders automatically move to better
points corresponding to the user’s operation.

A visual bar shows the distribution of goodness values along
the line that passes the current parameter point and whose di-
rection is the same as the parameter’s axis (Figure 5). Note
that when the user modifies a certain parameter, the visu-
alizations of the other parameters will change dynamically.
This visualization continuously tells the user which parame-
ter should be modified and how much the parameter should
be modified, thus achieving higher quality designs. This helps
the user not only to find better parameter sets quickly but also
to explore the design space effectively without visiting bad
designs.

xi

x j

xi

x j

current parameter set

Figure 5. The bars visualize the distribution of the goodness values along
each slider.

The purpose of the optimization is not to find the optimal pa-
rameter set automatically but rather to assist manual interac-
tive exploration on the part of the user by gently guiding the
current parameter set to a reasonable direction. To achieve
this, we use the gradient descent method with a fixed num-
ber of iterations, following Prévost et al.’s work [14]. In this
method, the system first computes the gradient of the good-
ness function at the current parameter set and then slightly
modifies the set to move in the gradient direction instead of
instantly jumping to the optimal solution. This enables the
user to gradually approach to the optimal solution by con-
tinuously scribbling the slider knob back and forth. We nu-
merically compute the gradient using forward differentiation.
This process could be written as

x← x+ α∇f(x), (6)

where α > 0 is a small value parameter that defines the
strength of optimization. Note that, in order to avoid con-
flicting with the user’s editing, the system does not update
the currently edited parameter. This process is performed ev-
ery time the system receives a slider-value-changed event. In
our experimentations, we typically set α = 0.005.

APPLICATIONS
We evaluated our method by using it with four example appli-
cations. All four applications are from different domains to

5

demonstrate that the proposed method is suitable for general
(not domain-specific) use. We chose CrowdFlower3 as the
platform of crowdsourcing. Table 1 lists a summary of the
crowdsourcing statistics. We analyzed each parameter space
using all the valid comparisons we obtained as a result of
crowdsourcing.

Color Correction
When correcting digital photos, users have to tweak many pa-
rameters, including unintuitive ones such as saturation, which
is sometimes quite difficult for novices. To facilitate this
task, we selected six popular parameters for this application:
brightness, contrast, saturation, and color balance (color of
Red, Green, and Blue (RGB)). For this experiment, we chose
a photo of vegetables (Figure 6, left) from a photo sharing ser-
vice (morgueFile4) and asked crowd workers to choose which
version would be better to use in a magazine or product ad-
vertisement.

Figure 6. (Left) The input image (goodness = 0.72). (Middle and Right)
Typical suggested images (goodness = 0.98, 0.95).

Figure 6 (middle and right) shows typical images suggested
by Smart Suggestion. Examples of VisOpt Slider visualiza-
tions with typical parameter sets are shown in Figure 7. These
visualizations provide assorted useful information; for exam-
ple, the photo at left needs to have a higher contrast, the cen-
ter photo can be improved by making the brightness slightly
higher and the red balance slightly lower, and the right photo
is already good and does not require any dramatic improve-
ments.

Figure 7. Visualizations for typical parameter sets in the application of
color correction.

Camera and Light Control
Secord et al. [19] presented a general model of view direc-
tion goodness for 3D models; however, that model is limited
3http://www.crowdflower.com
4http://www.morguefile.com

to the view direction and does not consider any other factors.
We feel that good views will change according to other con-
ditions such as perspective and lighting. In this scenario, we
chose a camera and light control task in a simple 3D scene
containing a 3D model, a perspective camera, and a point
light. There are eight parameters to tweak, including cam-
era position (−3.0 < xyz < 3.0), camera field of view, light
position (−3.0 < xyz < 3.0), and intensity of light. We used
the dragon model (almost symmetric), and the bunny model
(asymmetric). The rotation of the camera is automatically set
so that it always looks at the center of the model. We asked
crowd workers to choose the better one with the same instruc-
tion.

The results indicate a highly non-linear relationship between
camera and light parameters. When the camera comes to the
left side (camera.z < 0.0, Figure 8, middle) from the right
side (camera.z > 0.0, Figure 8, left) of the dragon model, the
visualization tells us that we should also move the light to the
left side (light.z < 0.0) so that the model is adequately lit.
Figure 8 right shows the views using the bunny model, where
we applied exactly the same parameter sets as to the left one
of Figure 8. We found that the visualizations between the case
of the dragon and the bunny are quite different even when the
parameter sets are equivalent, which indicates that different
models have different goodness functions. This suggests that
our approach of “final look-aware crowdsourcing” is key.

Figure 8. Designs and visualizations of the camera and light application.
(Left) A parameter set is applied to the dragon scene, whose camera.z
(the 3rd slider) is set to the maximum value. (Middle) Another parame-
ter set whose values are the same as the left one except that camera.z is
modified to the minimum value. (Right) The same parameter set as the
left one is applied to the bunny scene.

Shader
As Talton et al. [23] discussed, shading is quite difficult for
novices to understand and tweak and even game developers
and computer graphics researchers struggle with it at times.
The problem is that shaders often have unintuitive parameters
that affect the final look in a way that is difficult for casual
users to predict, such as “Fresnel Reflection” or “Metallics”.

6

http://www.crowdflower.com
http://www.morguefile.com

Table 1. Statistics of crowdsourcing in our experiments. Adjective shows the words we used for the instructions. For each application, we ordered a
fixed number of tasks at once, each of which contains 10 comparisons and 10 duplicated comparisons for quality control. We typically chose 200 for
the number of tasks, but 600 for the facial expression application because the parameter space is quite high-dimensional. We paid a fixed amount of
money for each task regardless of the quality; for example, in the case of the color correction, we paid 200 × 0.02 = 4.00 USD for workers in total.
The number of valid comparisons indicates |P ′|, which is the number of comparisons that passed quality check. We allowed crowd workers to perform
two or more tasks if they want, so we also report the number of unique workers. Completion time denotes the passed time from the point when the first
task is started to the point when the final task is finished.

#Parameters Adjective #Tasks Pay [USD / task] #Valid comparisons #Unique workers Completion time [min]
Color Correction 6 good 200 0.02 1095 45 30
Camera and Light (Dragon) 8 good 200 0.02 1010 26 25
Camera and Light (Bunny) 8 good 200 0.02 922 35 40
Shader (Kitchen) 8 realistic 200 0.02 907 46 34
Shader (Window Seat) 8 realistic 200 0.02 875 47 24
Facial Expression 53 natural 600 0.02 1771 57 55

Figure 9. Typical designs and their parameter sets in the shader appli-
cation. (Left and Middle) Kitchen scene. (Right) Window seat scene.

Furthermore, the final rendered images are different depend-
ing on many different factors such as lighting conditions and
the geometric features of the 3D models. Thus, users have
to explore the best parameters for each scene, which is time-
consuming. For this experiment, we used a shader for photo-
realistic metals provided in a popular shader package, Hard
Surface Shaders Free5 (Unity Asset Store). We applied this
shader to a teapot model. We chose eight parameters from the
shader parameters, and asked crowd workers to choose the
one that was the most realistic as a stainless steel teapot. We
experimented with two different scenes: a kitchen scene with
standard lighting and a window seat scene with backlighting.

Figure 9 shows typical parameter sets with their visualiza-
tions. From these visualizations, we can learn, without any
trial-and-error, that the “Reflection” parameter (the fifth pa-
rameter in Figure 9) performs the most important role in this
application. We observed that the distributions of goodness
values are different from each scene; for example, a param-
eter set whose goodness value was 0.67 in the kitchen scene
had a goodness value of 0.93 in the window seat scene.

Blendshape Facial Expression
Blendshape is a standard approach to control the facial ex-
pressions of virtual characters [10], where a face model has a
5https://www.assetstore.unity3d.com/#/content/729

number of predefined continuous parameters and its expres-
sion is controlled by artists/designers by tweaking the param-
eters. Such direct control is made tedious because of the num-
ber of parameters. Furthermore, as discussed by Lewis et
al. [10], the space of valid expressions is actually quite small
in most cases, which means that extremely careful tweaking
is required to ensure natural, unbroken expressions. In this
scenario, we used a head model whose blendshape is defined
with 53 parameters (48 based on FACS [18], and 5 for jaw
control). To analyze the validity of this parameter space, we
asked crowd workers to choose the better natural expression.

Figure 10 shows typical designs and their goodness val-
ues. We believe that the goodness function is successfully
constructed and gives reasonable values for even this high-
dimensional application. Unlike random suggestions (typi-
cal goodness values are 0.3–0.6), where most of expressions
are broken, Smart Suggestion provides nice starting points
(around 0.7) with a high enough quality to inspire users.
The optimization also works well with this large number of
parameters to avoid wasting time with invalid expressions.
However, we found that the heatmap visualization was often
useless because each visualization bar tends to show a similar
color along its axis in this large parameter space.

EVALUATION

Quality of Analysis
Convergence with respect to Number of Comparisons
It is important to understand how many comparisons are nec-
essary for each application. If there are too many compar-
isons, it takes extra time and money, and if there are too few,
the obtained goodness function might be missing the impor-
tant feature of the parameter space. Here, we discuss the con-
vergence behavior graphs (Figure 11) of the shader and the fa-
cial expression applications, where the goodness values of 30
randomly selected parameter sets are plotted for each graph.
Beginning with 20 comparisons, we computed the goodness
function using the limited number of comparisons, and then
repeatedly increased the number of used comparisons by 10.
Invalid comparisons that did not pass the quality control were
excluded.

As shown in the graph of the shader application, the curves
are relatively stable with more than 400 comparisons (roughly
more than 2 USD), though they do not converge completely.
Since our goal is to assist users with interactive exploration

7

https://www.assetstore.unity3d.com/#/content/729

0.15 0.31 0.49 0.61 0.68 0.88 0.15 0.31 0.49 0.61 0.68 0.88
Figure 10. Typical designs of facial expressions controlled by 53 blendshape parameters. The values shown in each picture are the goodness values
computed by our method.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20

50

80

11
0

14
0

17
0

20
0

23
0

26
0

29
0

32
0

35
0

38
0

41
0

44
0

47
0

50
0

53
0

56
0

59
0

62
0

65
0

68
0

71
0

74
0

77
0

80
0

83
0

86
0

89
0

G
oo

dn
es

s
Va

lu
e

No. of Comparisons

Shader (Kitchen)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20

70

12
0

17
0

22
0

27
0

32
0

37
0

42
0

47
0

52
0

57
0

62
0

67
0

72
0

77
0

82
0

87
0

92
0

97
0

10
20

10

70

11
20

11

70

12
20

12

70

13
20

13

70

14
20

14

70

15
20

15

70

16
20

16

70

17
20

17

70

G
oo

dn
es

s
Va

lu
e

No. of Comparisons

Blendshape Facial Expression

Figure 11. Convergence behavior with respect to the number of com-
parisons. Each curve shows the transition of the goodness value on a
randomly selected parameter set.

rather than to find the exact optimal parameter set automat-
ically, we believe our analysis is convergent enough for the
purpose. We observed similar convergence graphs in the
other applications, and even, somewhat surprisingly, it is true
in the facial expression with 53 parameters, where more than
900 comparisons are required to be stable.

Adequacy of Estimated Goodness Functions
To check the adequacy of the estimated goodness functions,
we applied a cross-validation test to the acquired data set
for the color correction and the facial expression applica-
tions. We randomly selected 100 samples from the valid
comparisons P ′ obtained via crowdsourcing as a testing set,
which we denote P ′testing. Then, we trained the goodness func-
tion f by using the rest of the valid comparisons P ′training =

P ′ − P ′testing as a training set (the size of training data set is
995 for the color correction and 1671 for the facial expres-
sion). If the estimated goodness function f obtained from
P ′training is adequate, it should be able to predict the distribu-
tion of the scores of the comparisons in P ′testing. That is, as for
a paired comparison in the testing set (i, j) ∈ P ′testing, the dif-
ference between the estimated goodness values f(xi)−f(xj)

-1

-0.5

0

0.5

1

1 2 3 4 5
Score of Pairwise Comparison

(Facial Expression)

-1

-0.5

0

0.5

1

1 2 3 4 5
Score of Pairwise Comparison

(Color Correction)

R
el

at
iv

e
G

oo
dn

es
s

Va
lu

e

Figure 12. Relationship between the scores and their computed relative
goodness values. Black lines are the fitted lines.

should be correlated to the score (1–5) given to the pair by a
crowd worker. We show such plots in Figure 12. Although
the data shows large variance due to diversity of human pref-
erence and noise from careless workers, we can still observe
a tendency that a crowd worker rated i higher than j when the
goodness value for i (f(xi)) is higher than j (f(xi)). This in-
dicates that the trained goodness function f successfully pre-
dicted the relative goodness values of paired comparisons that
do not appear in the training set.

User Study of the Interfaces
We conducted an informal user study to determine whether
Smart Suggestion and VisOpt Slider interfaces are useful for
novice users or not. Four computer science students partic-
ipated in this study. We asked them to explore the design
spaces and find the best parameter sets on the four applica-
tions, where they can use both random suggestions/standard
sliders and Smart Suggestion/VisOpt Slider. After the trial,
we asked the participants to fill questionnaires.

We found all the participants could use our proposed inter-
faces effectively. The score of System Usability Scale (SUS)
[2] was 77.5 on average (SD = 11.6), which could be consid-
ered as “good”. All the participants preferred to use the Smart
Suggestion rather than random suggestions (6.75 on average
with 7-pt Likert scale; 7 is the best), and also preferred VisOpt
Slider rather than standard sliders (6.25 on average). Overall,
a combination of the Smart Suggestion and VisOpt Slider in-
terfaces is preferable to use (6.25 on average).

DISCUSSION
The results of the user study suggests that the Smart Suggest
and VisOpt Slider interfaces provide users with a good start-
ing point for designing visuals. For examples, modeling a fa-
cial expression is usually quite difficult, but users successfully

8

used Smart Suggestion to select a sample expression with
which to start the precise control, thus reducing the amount
of time needed to create a visual. In the case of the cam-
era and lighting control application, the VisOpt slider helped
users find better lighting parameters automatically simply by
controlling one parameter for the camera. In another case of
photo color correction, there are some automatic correction
algorithms; however, such algorithms typically cannot con-
sider the context of photos. For example, a user might want
to make a photograph “sad” or “happy” by changing its color.
This is not possible with the automatic method.

The facial expression application, for example, takes an hour
and costs more than 10 USD for the crowdsourcing, which
might reduce user motivation to use our interface. However,
there are certain cases where the task is very critical (e.g.
preparing a visual for a large-budget advertising campaign),
and knowing general-public preference (customer opinion)
via crowdsourcing is worth investing time and money. An-
other possible scenario for the facial expression application
is that the 3D modeler can sell his/her 3D face model with
the result of the parameter analysis. In this case, end users
can use our user interface without running costly analysis by
themselves.

Other Possible Representations of Goodness Function
In this work, we chose a non-parametric representation of
RBF function as a representation of goodness function. The
role of this function is similar to the ranking function pro-
posed by Chaudhuri et al. [5], where they represented it as a
simple weighted sum of the input vector. Secord et al. [19]
proposed some representations for goodness function based
on linear-K models and a quadratic model. We believe that
simply applying their techniques to our problem cannot cap-
ture the non-linear distribution of goodness shown in our vi-
sualization, and also the non-linear relationships such as the
relative positions of the camera and the light. Note that Sec-
ord et al. [19] also proposed a non-parametric representation
based on the K-nearest-neighbors model in their paper. How-
ever, it cannot be used for our purpose since it cannot com-
pute a goodness value for a single parameter set but only the
preference in a pair of parameter sets; furthermore, it is com-
putationally too expensive to use for interfaces.

Limitation
One of the most significant limitations of our approach is that
the user has to make the instruction for crowdsourcing. This
was not evaluated in the user study. Of course, we prepared
an instruction template, but this cannot be automated.

At present, we cannot obtain the parameter analysis results in
real-time because we use the crowdsourcing platform. From
the statistics of the crowdsourcing we conducted, roughly half
an hour seems required for around 8 dimensional design tasks
and one hour for around 50 dimensional tasks. This might be
a problem for users who cannot wait and want to obtain the re-
sults immediately. (Hopefully this process will become faster
as the popularity of crowdsourcing expands.) In addition to
the cost in terms of time, monetary cost is also a problem, as
some users might feel the price of our analysis is too high.

We paid 4 USD in total to crowd workers for the shader ap-
plication, which we believe to be a reasonable price.

Design Implication
Learning the personal preference of the users (not the crowd)
[20] could be an interesting future direction. Because hu-
man preferences differ depending upon the individual and the
culture, considering clusters of crowds [8] could improve the
quality of goodness functions. To lower the monetary and
timing costs of crowdsourcing, it could be helpful to sample
parameter sets in a progressive way and dynamically change
the tasks [25]. Web design and presentation slide design con-
tain many discrete parameters such as fonts so currently they
are out of our scope, but considering such discrete parameters
is an important direction to take in our future work. Similar
to AttribIt [5], we feel that considering two or more types of
goodness criteria for a design task could provide more use-
ful interfaces. In our current approach, every different image
task requires re-crowdsourcing, and this limits the scalabil-
ity; to improve this, we are thinking of combining multiple
crowdsourced results or reusing previous ones. Generating a
small number of new sliders by using dimensionality reduc-
tion techniques is also a potential focus of our future work.

CONCLUSION
We presented a technique to analyze design parameter space
via crowdsourcing. Analysis results are used to obtain a
goodness function that maps a given parameter set to its good-
ness value. On the basis of this goodness function, we created
two interfaces to facilitate design exploration: Smart Sugges-
tion and VisOpt Slider. We applied our technique to vari-
ous visual design tasks. As validation of our approach, we
checked the quality of analysis and evaluated our interfaces
through an informal user study.

ACKNOWLEDGMENTS
Yuki Koyama is funded by JSPS research fellowship. This
work was supported by JSPS KAKENHI Grant Number
26·8574, 26240027. The face model is provided by faceshift
AG under CC BY 3.0. The dragon and bunny models are
provided by The Stanford 3D Scanning Repository.

REFERENCES
1. Agrawal, S., Shen, S., and van de Panne, M. Diverse

motion variations for physics-based character animation.
In Proc. SCA ’13, ACM (2013), 37–44.

2. Bangor, A., Kortum, P. T., and Miller, J. T. An empirical
evaluation of the system usability scale. Int. J.
Hum.-Comput. Int. 24, 6 (2008), 574–594.

3. Bishop, C. M. Neural Networks for Pattern Recognition.
Oxford University Press, Inc., 1995.

4. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J.,
Fright, W. R., McCallum, B. C., and Evans, T. R.
Reconstruction and representation of 3d objects with
radial basis functions. In Proc. SIGGRAPH ’01, ACM
(2001), 67–76.

5. Chaudhuri, S., Kalogerakis, E., Giguere, S., and
Funkhouser, T. Attribit: Content creation with semantic
attributes. In Proc. UIST ’13, ACM (2013), 193–202.

9

6. Gingold, Y., Shamir, A., and Cohen-Or, D. Micro
perceptual human computation for visual tasks. ACM
Trans. Graph. 31, 5 (2012), 119:1–119:12.

7. Hartmann, B., Yu, L., Allison, A., Yang, Y., and
Klemmer, S. R. Design as exploration: Creating
interface alternatives through parallel authoring and
runtime tuning. In Proc. UIST ’08, ACM (2008),
91–100.

8. Kajino, H., Tsuboi, Y., and Kashima, H. Clustering
crowds. In Proc. AAAI ’13 (2013).

9. Lee, B., Srivastava, S., Kumar, R., Brafman, R., and
Klemmer, S. R. Designing with interactive example
galleries. In Proc. CHI ’10, ACM (2010), 2257–2266.

10. Lewis, J. P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.,
and Deng, Z. Practice and theory of blendshape facial
models. In EG 2014 - STARs, Eurographics Association
(2014), 199–218.

11. Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister,
H., Ruml, W., Ryall, K., Seims, J., and Shieber, S.
Design galleries: A general approach to setting
parameters for computer graphics and animation. In
Proc. SIGGRAPH ’97, ACM Press/Addison-Wesley
Publishing Co. (1997), 389–400.

12. Ngan, A., Durand, F., and Matusik, W. Image-driven
navigation of analytical brdf models. In Proc. EGSR ’06,
Eurographics Association (2006), 399–407.

13. Okabe, M., Matsushita, Y., Shen, L., and Igarashi, T.
Illumination brush: Interactive design of all-frequency
lighting. In Proc. Pacific Graphics ’07 (2007), 171–180.

14. Prévost, R., Whiting, E., Lefebvre, S., and
Sorkine-Hornung, O. Make it stand: Balancing shapes
for 3d fabrication. ACM Trans. Graph. 32, 4 (2013),
81:1–81:10.

15. Quinn, A. J., and Bederson, B. B. Human computation:
A survey and taxonomy of a growing field. In Proc. CHI
’11, ACM (2011), 1403–1412.

16. Reinecke, K., and Gajos, K. Z. Quantifying visual
preferences around the world. In Proc. CHI ’14, ACM
(2014), 11–20.

17. Reinecke, K., Yeh, T., Miratrix, L., Mardiko, R., Zhao,
Y., Liu, J., and Gajos, K. Z. Predicting users’ first
impressions of website aesthetics with a quantification
of perceived visual complexity and colorfulness. In
Proc. CHI ’13, ACM (2013), 2049–2058.

18. Sagar, M. Facial performance capture and expressive
translation for king kong. In ACM SIGGRAPH 2006
Sketches, ACM (2006).

19. Secord, A., Lu, J., Finkelstein, A., Singh, M., and
Nealen, A. Perceptual models of viewpoint preference.
ACM Trans. Graph. 30, 5 (2011), 109:1–109:12.

20. Shapira, L., Shamir, A., and Cohen-Or, D. Image
appearance exploration by model-based navigation.
Comput. Graph. Forum 28, 2 (2009), 629–638.

21. Sorkine, O. Differential representations for mesh
processing. Comput. Graph. Forum 25, 4 (2006),
789–807.

22. Sýkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., and
Collins, S. Adding depth to cartoons using sparse depth
(in)equalities. Comput. Graph. Forum 29, 2 (2010),
615–623.

23. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and
Koltun, V. Exploratory modeling with collaborative
design spaces. ACM Trans. Graph. 28, 5 (2009),
167:1–167:10.

24. Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and
Koltun, V. Metropolis procedural modeling. ACM Trans.
Graph. 30, 2 (Apr. 2011), 11:1–11:14.

25. Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai,
A. Adaptively learning the crowd kernel. In Proc. ICML
’11, ACM (2011), 673–680.

26. Terry, M., and Mynatt, E. D. Side views: Persistent,
on-demand previews for open-ended tasks. In Proc.
UIST ’02, ACM (2002), 71–80.

27. Terry, M., Mynatt, E. D., Nakakoji, K., and Yamamoto,
Y. Variation in element and action: Supporting
simultaneous development of alternative solutions. In
Proc. CHI ’04, ACM (2004), 711–718.

28. Willett, W., Heer, J., and Agrawala, M. Scented widgets:
Improving navigation cues with embedded
visualizations. IEEE Trans. Visual. Comput. Graphics
13, 6 (2007), 1129–1136.

29. Witkin, A., and Kass, M. Spacetime constraints.
SIGGRAPH Comput. Graph. 22, 4 (1988), 159–168.

30. Xu, A., Huang, S.-W., and Bailey, B. Voyant:
Generating structured feedback on visual designs using
a crowd of non-experts. In Proc. CSCW ’14, ACM
(2014), 1433–1444.

APPENDIX

Solving Minimization as a Linear Algebra
In our analysis, the system solves a minimization problem de-
scribed in (4), which can be solved as a simple linear algebra.
Using matrices, we can deform the formula into

min
y

(
‖Ay − d‖2 + ω‖Ly‖2

)
, (7)

where the first term corresponds to the relative constraint,
and the second term corresponds to the continuous constraint.
A ∈ RM ′×M ′

is defined as Ai,i = 1, Ai,j = −1 if (i, j) ∈
P ′ and otherwise 0, d ∈ RM ′

is defined as di = di,j if
(i, j) ∈ P ′ and otherwise 0, and L is the Laplacian matrix.
By setting the derivative with respect to y to zero, we can
obtain the following linear equation:(

ATA+ ωLTL
)
y = ATd. (8)

This provides the optimal solution of the minimization prob-
lem and could easily be solved by standard techniques such
as Cholesky decomposition.

10

	Introduction
	Related Work
	Crowd-Powered Analysis
	Visual Parameter Tweaking

	Crowd-Powered Parameter Analysis
	Overview of the Process
	Sampling Parameter Sets
	Gathering Pairwise Comparisons by Crowdsourcing
	Estimating Goodness Values of Sampling Points
	Fitting a Goodness Function

	User Interface
	Smart Suggestion
	VisOpt Slider

	Applications
	Color Correction
	Camera and Light Control
	Shader
	Blendshape Facial Expression

	Evaluation
	Quality of Analysis
	Convergence with respect to Number of Comparisons
	Adequacy of Estimated Goodness Functions

	User Study of the Interfaces

	Discussion
	Other Possible Representations of Goodness Function
	Limitation
	Design Implication

	Conclusion
	Acknowledgments
	REFERENCES
	Appendix
	Solving Minimization as a Linear Algebra

