UIST 2022 BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions

Yuki Koyama & Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST)

Background: Human-in-the-Loop Optimization

Parametric design is ubiquitous in digital content creation

Parametric design is ubiquitous in digital content creation

Photo color enhancement

Procedural modeling

ML-based content generation

Math Viewpoint

Design parameter tweaking

Challenge: Defined by human preference

Mathematical optimization

Human-in-the-loop optimization

solves optimization problems with perceptual objective functions (e.g., preference)

"Which do you like?"

Ask

Bayesian optimization (BO)

- Intelligent sampling strategy
 - "Exploration and exploitation"
- Able to find a good solution within a small number of iterations (sample efficient)
 - Less burden on the evaluator

Previous Work: Human-in-the-Loop Bayesian Optimization

Photo Enhancement & 3D Computer Graphics Koyama+ Koyama+ SIGGRAPH 2017 SIGGRAPH 2020

→ Successfully used in previous work to enable efficient search

Melody Generation Zhou+ IUI 2020

Exploration

Photographic Lighting Yamamoto+ **UIST 2022**

Problem & Motivation

Problem: No freedom for designer, reducing agency and creativity [Chan+, CHI 2022]

Q: Can we benefit from BO's intelligence while providing the designer with freedom?

[Chan+, CHI 2022] L. Chan et al. 2022. Investigating Positive and Negative Qualities of Human-in-the-Loop Optimization for Designing Interaction Techniques. In Proc. CHI 2022.

I want to explore freely!

"Which do you like?"

"I like this one."

Our Framework: "BO as Assistant"

Learning the designer's preference

"Maybe you like these designs?"

Technical Background: Preferential Bayesian Optimization (PBO)

Bayesian Optimization (BO)

- A global "black-box" optimization algorithm
- It can find optimal solutions with only a small number of iterations
- Intelligent sampling strategy
 - **Exploration:** Favor unexplored regions
 - **Exploitation:** Favor high-expectation regions
- E.g., Hyperparameter tuning in deep learning [Akiba+, KDD 2019]

Shahriari et al., Taking the Human Out of the Loop: A Review of Bayesian Optimization, Proc. IEEE, 2016, doi: 10.1109/JPROC.2015.2494218

Preferential Bayesian Optimization (PBO)

- A variant of BO [Brochu+, NIPS 2007]
- Runs with relative preference data (rather than absolute scoring)
- Better suited for human-in-the-loop

Q: Can we extract relative preference data implicitly from slider manipulation?

Our Technique: **Extraction of Preferential Data for PBO**

The photo looks too dark. Let's manipulate "brightness".

Let's increase the value.

Still dark. Increase more.

Oh! Too much!! Let's decrease the value.

Now the photo looks nice. Let's stop.

- Data points extracted from slider manipulation
- Suggestions generated by BO

Acquisition function Priority in sampling

- Data points extracted from slider manipulation
- Suggestions generated by BO

Acquisition function Priority in sampling

- : Data points extracted from slider manipulation
- Suggestions generated by BO

Acquisition function Priority in sampling

- : Data points extracted from slider manipulation
- Suggestions generated by BO

Acquisition function Priority in sampling

Demonstrations

Photo Color Enhancement

- #Parameters: 12
 - Brightness
 - Contrast
 - Saturation
 - Lift (RGB)
 - Gamma (RGB)
 - Gain (RGB)

• • • **Preview: Parameters:** Brightness Contrast Saturation Lift (R) Lift (G) Lift (B) Gamma (R) 🧧 Gamma (G) Gamma (B) 🧧 Gain (R) Gain (G) Gain (B)

x5

Suggestions:

x5

Procedural Material Design

• #Parameters: 8

- Threshold
- Noise Scale
- Noise Detail
- Noise Roughness
- Noise Distortion
- **Ambient Occlusion**
- **Bump Strength**
- Peel Boundary Strength
- Design goal: Rusted metal with peeled painting

The 3D model is provided by Bastien Genbrugge under CC BY 4.0 at https://skfb.ly/6pNQ6

The 3D model is provided by Bastien Genbrugge under CC BY 4.0 at https://skfb.ly/6pNQ6

Suggestion #1 Suggestion #2 Suggestion #3

Parameters:

ThresholdNoise ScaleNoise DetailNoise RoughnessNoise DistortionAmbient OcclusionBump StrengthPeel Boundary Strength

Suggestions:

The 3D model is provided by Bastien Genbrugge under CC BY 4.0 at https://skfb.ly/6pNQ6

Suggestion #1 Suggestion #2 Suggestion #3

Discussion: Different Preferences Can Be Learned Appropriately

Goal

Goal

Summary

Designer

Manipulate sliders to search for the best design as usual

Summary:

- manipulation (without requiring explicit input)
- Applicable to various design domains (as demonstrated in three domains)

Bayesian Optimization (BO) Assistant

• Using BO as an "assistant" of a designer (rather than human-in-the-loop) New techniques to generate suggestions using BO just by observing slider

