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ABSTRACT
This paper presents a deep-learning-based interactive system sep-
arating the singing voice from input polyphonic music signals.
Although deep neural networks have been successful for singing
voice separation, no approach using them allows any user interac-
tion for improving the separation quality. We present a framework
that allows a user to interactively fine-tune the deep neural model
at run time to adapt it to the target song. This is enabled by design-
ing unified networks consisting of two U-Net architectures based
on frequency spectrogram representations: one for estimating the
spectrogram mask that can be used to extract the singing-voice
spectrogram from the input polyphonic spectrogram; the other for
estimating the fundamental frequency (F0) of the singing voice.
Although it is not easy for the user to edit the mask, he or she
can iteratively correct errors in part of the visualized F0 trajectory
through simple interaction. Our unified networks leverage the user-
corrected F0 to improve the rest of the F0 trajectory through the
model adaptation, which results in better separation quality. We val-
idated this approach in a simulation experiment showing that the
F0 correction can improve the quality of singing-voice separation.
We also conducted a pilot user study with an expert musician, who
used our system to produce a high-quality singing-voice separation
result.
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• Applied computing→ Sound and music computing.
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Figure 1: Overview of interactive deep singing-voice separa-
tion, where the user can interact with the deep neural net-
workmodel to fine-tune the quality of the separated singing
voice. The user feedback is provided as F0 trajectories, based
on which the model is adapted.
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1 INTRODUCTION
As the use of subscription music services has become commonplace,
efficient music information retrieval systems and intelligent music
listening interfaces have become more and more important to in-
crease the value of human music activities. Since singing voice is
one of the most important elements in music [17] and many listen-
ers pay attention to the singing voice and its lyrics [6], singing-voice
separation from polyphonic music signals [30] has been a funda-
mental technology for various real-world applications. It can, for
example, be used to retrieve songs with singers having voice timbre
similar to that of a listener’s favorite artist [13], to improve the
performance of audio-to-lyrics synchronization for automatically
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generating lyric videos [20], and to provide an intelligent music-
playback interface that allows the user to interactively change the
playback order of multiple songs according to vocal gender [26].

Themajority of recently proposed singing-voice separationmeth-
ods involve deep learning [11, 16, 19, 23, 24, 30, 32–34], where re-
searchers have mainly focused on how to improve the accuracy of
singing-voice separation as much as possible for songs as various as
possible. Thus the main concern is to seek better training methods,
better model architectures, and larger training datasets that achieve
better accuracy with better generalization ability. It is, however,
difficult for even state-of-the-art methods to achieve the perfect
separation (e.g., electric guitar sounds in some songs are sometimes
recognized as singing voice), and there is no means to improve
the quality except for feeding more training data, which is not a
feasible option for end-users. Thus, with these methods it is not
easy to obtain a high-quality separation result for a specific song
even if a high interaction cost can be afforded.

In this work, we take a different approach: instead of using a
static general model for separation, we investigate fine-tuning of
an initial model based on U-Net architectures to adapt it to a spe-
cific target song to improve the separation accuracy for that song.
Specifically, we propose a human-in-the-loop model adaptation
framework (see Figure 1) where the user iteratively provides feed-
back to the model for fine-tuning for the target song. We call this
framework interactive deep singing-voice separation. The key idea
is to perform this feedback loop in the domain of fundamental
frequency (F0, which is a physical property of sound related to
pitch) of the singing voice, instead of the domain of separated audio
signals or their frequency spectrograms. This allows the user to
easily communicate with the model through simple interaction
(e.g., mouse dragging) for correcting errors in the visualized F0
trajectory. In this framework, the user does not have to correct
all the F0 errors. After correcting some of them, the user can use
them to update the deep source separation model by adapting it to
the target song, which could be expected to result in automatically
correcting some remaining errors. This could reduce the burden of
manually correcting errors to achieve the perfect separation.

Note that our approach is complementary to the approach of
training a general model; our framework could use any state-of-
the-art training methods, architectures, and datasets in the future
to train an initial model, and then let users interactively adapt the
model for a specific song to obtain even better separation.

Our contributions are summarized as follows:

• We present the first singing-voice separation framework that
allows users to interactively fine-tune a deep-learning model
to a target song to increase separation accuracy.

• We propose to let users interact with estimated F0 trajecto-
ries instead of separated singing voices to provide feedback
to the model since it is much easier for humans to edit F0
trajectory than to edit audio signals.

• We validated through simulated experiments that our frame-
work could improve the separation accuracy by feeding cor-
rected F0 trajectories. We also validated through a pilot user
study that an expert musician could perform interactive
model adaptation with our system and then obtain a better
singing-voice separation result.

2 RELATEDWORK
User-guided sound source separation methods have already been
investigated, though they are not based on deep learning and do
not focus on singing voices. Those methods can leverage human
interaction to improve the accuracy of sound source separation. For
example, by giving an audio example such as a singing or speaking
voice as side information, the corresponding sound source that is
similar to the example can be separated [25, 31]. The separation
accuracy can be improved by annotating the time when each sound
source exists alone [28], annotating the F0 by hand [9, 12], and
annotating sound sources in the time-frequency domain [4, 7, 22].
These methods, however, have not shown how to use human in-
teraction to improve the separation accuracy of deep learning. In
contrast, we investigate how users can be involved in the deep-
learning-based separation process, and we show how to adapt the
deep model by using the F0 error correction.

Several methods that allow users to interactively fine-tune deep
neural models have been proposed in domains other than singing-
voice separation. For example, in the image processing domain,
researchers have proposed interactive image segmentation methods
that allow interactive fine-tuning [35, 36]. In this work, we present
the first interactive deep method for the singing-voice separation
problem and propose the novel idea of using the F0 trajectory as
the interface between the deep neural model and the user.

Our framework is related to the approach called interactive ma-
chine learning [1, 10] in that training of machine learning models
happens during user interaction. While the main purpose of inter-
active machine learning is to allow an end-user to rapidly train
a general model to the target problem, our framework uses inter-
activity for training a specific model that works well to a specific
instance of the target problem.

3 INTERACTIVE DEEP SINGING-VOICE
SEPARATION

We propose a deep-learning-based singing-voice separation method
that utilizes user guides. Our key idea is to use the fundamental fre-
quency (F0) of singing voice, which is an acoustic feature of singing
voice and is closely related to the improvement of singing-voice sep-
aration quality, as the interface for the user to interact with the deep
model since it is much easier for users to correct F0 trajectories than
to correct separated singing voice signals. Performance improve-
ments of F0 estimation and singing-voice separation in music have
been used to improve each other’s performance [5, 8, 15]. Recently,
deep-learning-based methods that jointly estimate singing-voice
F0 and separated singing voice have also been proposed [18, 27].

Figure 2 shows our prototype system, which displays the input
polyphonic music audio signals, the estimated or user-corrected F0
trajectory, and the separated singing voice. The F0 estimation error
can be easily corrected by simple mouse-based interactions and is
used as a user’s guide to update separated singing voice. The user
corrects F0 by dragging the mouse, uses the left button to draw
new F0 trajectory, and uses the right button to delete existing F0
trajectory. The parameters of the deep-learning model are tuned by
pressing the “Update DNN” button after correcting the F0 trajectory.
Since our current implementation assumes that the user corrects
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Figure 2: Screen capture of our prototype system. (Top) In-
put polyphonicmusic audio signals. (Middle)Widget for cor-
recting the estimated F0 trajectory. (Bottom) Current output
of the separated-singing voice.

F0 from the beginning, the parameters are updated with the data
up to the point when the user last corrected it.

By tuning the model parameters, two effects can be obtained.
The first is to speed up the manual process of the F0 error correction.
Since the F0 of the uncorrected part can be re-estimated by the deep
learning model that is updated by using the partially corrected F0,
F0 error correction can be speeded up without correcting all F0
trajectories. Although such a function does not exist in the previous
work on interactive time-pitch annotation-informed separation [12],
this kind of interaction was proposed for acoustic event detection
[21]. The second effect obtained by tuning the model parameters is
to improve the singing-voice separation quality. The user can obtain
a singing voice with improved separation quality by simply deleting
the F0 where the singing voice does not exist and, elsewhere, by
drawing the correct F0 of the singing voice part.

4 IMPLEMENTATION
4.1 Deep Singing-Voice Separation
We use the U-Net architectures for both the singing-voice separa-
tion and the F0 estimation. Based on Jansson et al. [19], amplitude
spectra obtained using the short-time Fourier transform (STFT)
are used for the input to the U-Net. They are computed with the
LibROSA python library from a monaural audio signal (with a 44.1
kHz sampling rate) that is obtained by averaging left and right
channels in the original stereo audio signal of a song. The STFT
conditions and the U-Net architecture are the same as in [27] except
that the U-Net has only one decoder that outputs a vocal mask.

The output of the U-Net for the F0 estimation is represented as a
two-dimensional F0 saliency map (corresponding to the frequency
spectrogram) [2], in which the F0 saliency value is between 0 and 1
at each time-frequency bin. The ground truth of the F0 saliency
map is obtained as a Gaussian-blurred binary saliency spectrogram
(i.e., quantized F0 trajectory) as proposed in [2].

In order to have the user’s F0 correction result contribute to the
improvement of the singing voice separation quality, we connect the
U-Net for the source separation and the U-Net for the F0 estimation
and estimate their parameters jointly. There are various ways of
connecting the U-Nets. Jansson et al. [18] reported that a joint

Spectrogram F0 saliency map Vocal mask

Spec. Vocal F0

Concat

U-Net U-Net
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U-Net U-Net
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Figure 3: Overview of our model. Two U-Nets are concate-
nated to estimate both a vocal mask (SVS) and an F0 saliency
map (F0). We have two variants; the first one separates
singing voice after F0 estimation (F0→ SVS) and the second
one separates singing voice first (SVS→ F0).

architecture repeating twice a network comprising the U-Net for
the source separation followed by the U-Net for the F0 estimation
(i.e., four U-Nets in total after the repetition) achieved the best
performance. In order to reduce the computation time to improve
the user interactivity for our purpose, we implemented two types
of non-repetitive connection (Figure 3), one of which concatenates
the F0 estimation result to the U-Net input for the singing voice
separation (i.e., the U-Net for the F0 estimation followed by the U-
Net for the source separation) and the other of which concatenates
the singing-voice separation result to the U-Net input for the F0
estimation (i.e., the U-Net for the source separation followed by the
U-Net for the F0 estimation).

The whole connected network consisting of the two U-Nets
can be trained jointly by the back-propagation algorithm. Since
the user-corrected F0 can be used to compute the loss for the
back-propagation algorithm, the network parameters (i.e., the deep
model) can be updated to adapt to the target song and its singing
voice. The connected network of the former type (F0 estimation
followed by singing-voice separation) directly updates the U-Net
parameters for the singing-voice separation by reflecting the user-
corrected F0 and also re-estimates the unmodified F0. In contrast,
the connected network of the latter type (singing-voice separation
followed by F0 estimation) allows all the parameters of both of the
U-Nets to be updated by using the user-corrected F0.

4.2 Interaction
The F0 saliency map is first converted to the F0 trajectory because
it is hard for the user to directly correct the map. This conversion
is implemented by picking, at each time-frame, the maximum peak
value in the F0 saliency map. If the peak value does not exceed the
threshold (0.1), the corresponding point on the map is considered
mute (silence). This method does not consider the case where there
are multiple simultaneous singing voices (multiple F0s at the same
time) since this paper focuses on a simple interaction to realize the
proposed concept.
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As shown in Figure 2, the beat timings and the frequencies cor-
responding to the note names (e.g., C3 and A3) are visualized as
grid lines in order to support correction by the user. Beat timing
was automatically estimated using the madmom python library.

5 EVALUATION
We conducted a simulation experiment assuming that the user gave
an ideal F0, and we conducted a pilot study with an expert musician.

To evaluate the singing-voice separation accuracy, theMedleyDB
dataset [3] and the RWC Music Database [14] were used. The data
consisted of 150 songs, 50 from the former and 100 from the lat-
ter. From the MedleyDB dataset, we chose 50 songs that contain
singing voices with a melody role and have F0 annotations. From
neither the MedleyDB dataset nor the RWC Music Database did
we choose songs in which the vocal track contained other sounds
such as accompaniment piano sounds and the other tracks partially
contained some singing voices due to the recording environment.

5.1 Simulation Experiment
To evaluate the separation accuracy by 5-fold cross validation, the
150 songs were randomly divided into five 30-song groups. The
standard evaluation tool mir_eval [29] was used for computing the
signal-to-distortion ratio (SDR) for the singing-voice separation.
The SDR was calculated for each song, and then its median over all
songs was calculated.

By using the training set of the cross validation, the model pa-
rameters were first trained for 256 epochs (iterations). Then, to
simulate a situation where a user partially or fully corrected F0
trajectories, we partially or fully used the correct F0 annotation
of each song in the training set to fine-tune the parameters for 32
epochs. From the beginning of each song, we used 25%, 50%, 75%,
or 100% of the annotation.

We compared the performances of the following conditions:
• SVS (0%): A single U-Net for the singing-voice separation
(without using the F0 estimation).

• SVS→ F0 (0%): The U-Net for the singing-voice separation
followed by the U-Net for the F0 estimation1.

• F0 (0%) → SVS: The U-Net for the F0 estimation followed
by the U-Net for the singing-voice separation.

• SVS → F0 (25–100%) or F0 (25–100%) → SVS: Our deep
singing-voice separation with the model adaptation.

Note that the percentage value represents the ratio of the correct
F0 annotation used for the adaptation (fine-tuning). 0% means that
none of the F0 annotation is used and 100% means that all the F0
annotation of each song is used.

Figure 4 shows the results. The network that separates singing
voice after F0 estimation (F0 → SVS) had lower separation quality
than the network that separates singing voice first (SVS → F0)
when no model adaptation was performed (0%), but it had higher
separation quality when a sufficient amount (50%, 75%, and 100%) of
the correct F0 annotation (i.e., the user’s F0 correction) was given. In
addition, even when the F0 correction was performed only partially
(F0 (50%)→ SVS), the result showed higher performance than the
case without the F0 correction. Furthermore, our method with the

1Note that our connection method is different from that used in previous research [18].
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Figure 4: SDR value (higher is better) in each condition.

sufficient model adaption, F0 (100%) → SVS, greatly outperformed
the methods without the model adaptation (0%).

5.2 Pilot User Study
We also conducted an informal pilot study to see whether our
main target users (i.e., expert musicians who are familiar with the
concept of F0) could correct estimated F0 trajectories and fine-tune
the model to obtain better results. The participant was an expert
musician who had experience in correcting estimated F0 trajectories
of singing voice using existing software, Audionamix TRAX PRO
3. We asked the participant to separate one song, RWC-MDB-P
No. 007 [14]. We asked the participant to first check the initial F0
estimation and singing-voice separation results and then begin the
iteration of F0 correction and model adaptation for 30 minutes.

In an informal interview after this session, the participant com-
mented that the fine-tuning to automatically improve the rest of the
area by model adaptation was effective. For example, we observed
that errors such as a guitar solo mistakenly separated as singing
voice were automatically corrected by model adaptation with F0
correction of other parts.

6 CONCLUSION
This paper presented an interactive deep-learning-based framework
that can separate the singing voice from input polyphonic music
signals. The key idea was to involve the user in the loop to obtain
feedback about the target song, based on which the deep model can
be fine-tuned. The simulation experiment showed that our frame-
work could improve singing-voice separation quality. In addition,
we have shown in a user study that a user successfully corrected
F0 trajectories to improve singing-voice separation quality.

The current interaction for F0 correction is a simple mouse oper-
ation, and a future challenge is to improve usability with intelligent
support (e.g., like that provided by a magnetic selection tool used in
image-editing software and some commercial singing-voice separa-
tion software). We also plan to investigate the use of information
other than F0 for even better human-in-the-loop singing-voice sep-
aration.
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