The Visual Computer (CGI 2019)

Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation

Yuki Koyama & Masataka Goto

State Machine-Based Control for Interactive Apps

State machine-based control is widely used. Each state is associated with a single motion clip (in the basic usage). In response to run-time user input, the state is changed.

Source (**src**) motion

Goal: Achieve High-Quality Motion Transition

Triggered by user input at an arbitrary frame

Destination (**dst**) motion

Direct Approach (Current Practice)

Transition triggered

Naïve direct transition

Direct approach:

- Begin transition immediately after receiving the trigger
- **Directly** interpolate the **src** and • dst motions

Problem:

Visual artifacts (e.g., foot skate)

A new method should ...

- Be compatible with the state machine-based workflow
- Run in interactive real-time apps
- Finish the transition as quickly as possible

A new method should ...

- Be compatible with the state • machine-based workflow
- Run in interactive real-time apps
- Finish the transition as quickly as possible

A new method should ...

- Be compatible with the state • machine-based workflow
- Run in interactive real-time apps
- Finish the transition as quickly as possible

A new method should ...

- Be compatible with the state • machine-based workflow
- Run in interactive real-time apps
- Finish the transition as quickly as possible

Overview of Our Method

Our Approach: "One-Hop" Motion Transition

Transition triggered

0.2

Naïve direct transition

4

Transition triggered

Our optimal one-hop transition

Technical Challenges:

- 1. How should we choose a hop motion and arrange it?
- 2. How can we enable this in real-time apps?

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Overview of This Work

Our Solutions:

2. Solving the searches in precomputation

13

Technical Challenges:

- 1. How should we choose a hop motion and arrange it?
- 2. How can we enable this in real-time apps?

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Overview of This Work

Our Solutions:

2. Solving the searches in precomputation

Motion graphs

[Kovar+02, ...] [Zadziuk16, …]

These are incompatible with the state machine-based workflow

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Motion matching

Motion graphs

[Kovar+02, ...]

[Zadziuk16, ...]

These are incompatible with the state machine-based workflow

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Motion matching

Motion graphs

[Kovar+02, ...]

These are incompatible with the state machine-based workflow

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Motion matching

Statistical models

[Zadziuk16, ...]

Motion graphs

[Kovar+02, …]

These are incompatible with the state machine-based workflow

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Motion matching

Statistical models

[Zadziuk16, ...]

Motion graphs

[Kovar+02, …]

These are incompatible with the state machine-based workflow

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Motion matching

Statistical models

[Zadziuk16, ...]

State Machine-Compatible Approach [Ikemoto+07]

[lkemoto+07]

Similar to ours:

- They insert "hop" (intermediate) motions to achieve natural transitions
- Key difference:
 - We consider not only **naturalness** but also quickness to finish the overall transition (explained later)

21

1. Formulating a Search Problem

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

(Direct approach)

24

Unnatural transition

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

(Direct approach)

dst

dst

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

28

dst

dst

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

31

Overall transition duration

dst

Search Variables

dst

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

35

Search Variables

$T_t^* = \arg\min_{T_t} \{ S(T_t) + w R(T_t) \}$

$T_t^* = \arg\min_{T_t} \{ S(T_t) + w R(T_t) \}$

Smoothness cost: Encourage each transition to be as natural-looking as possible

$T_t^* = \arg\min_{T_t} \{ \left| S(T_t) \right| + w$

Smoothness cost: Encourage each transition to be as natural-looking as possible

$$R(T_t)$$

Responsiveness cost: Encourage the overall transition to finish as quickly as possible

$T_t^* = \arg\min_{T_t} \{ S(T_t) \}$

Smoothness cost: Encourage each transition to be as natural-looking as possible

Weight: Control the trade-off

 $R(T_t)$ } + ${\mathcal W}$

> **Responsiveness cost:** Encourage the overall transition to finish as quickly as possible

$T_t^* = \arg\min_{T_t} \{ S(T_t) \}$

Smoothness cost: Encourage each transition to be as natural-looking as possible

Weight: Control the trade-off

 $R(T_t)$ } w+

> **Responsiveness cost:** Encourage the overall transition to finish as quickly as possible

Evaluating Smoothness of Transitions [Kovar+02]

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Dissimilar High cost for transition (potentially non natural)

Similar Low cost for transition (expected to be natural)

Evaluating Smoothness of Transitions [Kovar+02]

High cost

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Unnatural transition

43

Evaluating Smoothness of Transitions [Kovar+02]

Low cost

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Natural transition

44

2. Solving the Search Problem in Precomputation

Solve the search problem for every possible trigger frame and for every possible state transition

- only once
- Store optimal transitions in a look-up table
 - frame as the key

May take a few days depending on the dataset size, but required

• In runtime, retrieve an optimal transition by using the triggered

for every possible state transition

May take a few days depending on the dataset size, but required only once

Store optimal transitions in a look-up table

• In runtime, retrieve an optimal transition by using the triggered frame as the key

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

Solve the search problem for every possible trigger frame and

Supposed Scenario: Interactive Dancing

Let a character dance using a game pad in an improvised manner

Supposed Scenario: Interactive Dancing

Run in Unity

- It is straightforward to implement our method • using Unity's PlayableAPI
- Our dance motion dataset
 - Around 20 motion clips for hop candidates
 - Each motion clip has around 20 sec

Use 30 frames (= 0.5 sec) for individual transitions

- I.e., src-to-hop (0.5 sec) and hop-to-dst (0.5 sec) •
- No postprocessing applied
 - E.g., footskating removal (e.g., [Ikemoto+06]) •

Result: "Ghost Force" Disappears by a Standing-Up Motion

Yuki Koyama and Masataka Goto | Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation | The Visual Computer (CGI 2019)

51

Other Results

https://koyama.xyz/project/one-hop_motion_transition/

The Direct Transition is Included in the Search Space

When the direct transition is already good, our solver is likely to select the one-hop transition that is equivalent to the direct transition

Future Work: Positional & Orientational Constraints

Current behavior

Depending on the inserted hop motion, the position & orientation may be changed

Future work

Add constraints in the search

55

- Optimal one-hop motion transition
 - It inserts a hop motion between the source and destination motions in an optimal way
- Consider both smoothness and responsiveness
 - Try to maximize both in balance
 - **Can be precomputed**
 - Run in real-time apps

- **Optimal one-hop motion transition**
 - It inserts a hop motion between the • source and destination motions in an optimal way
- Consider both smoothness and responsiveness
 - Try to maximize both in balance
 - **Can be precomputed**
 - Run in real-time apps

- Optimal one-hop motion transition
 - It inserts a hop motion between the • source and destination motions in an optimal way
- Consider both smoothness and responsiveness
 - Try to maximize both in balance •
 - **Can be precomputed**
 - Run in real-time apps

- Optimal one-hop motion transition
 - It inserts a hop motion between the • source and destination motions in an optimal way
- Consider both smoothness and responsiveness
 - Try to maximize both in balance •
 - **Can be precomputed**
 - Run in real-time apps

The Visual Computer (Proc. CGI 2019)

Precomputed Optimal One-Hop Motion Transition for Responsive Character Animation

Yuki Koyama & Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST)

The paper, videos, and slides are available at https://koyama.xyz/project/one-hop_motion_transition/

Comparison: Different Responsiveness Weights

Naïve direct transition

Our one-hop transition [large weight] more responsive, less smooth **Our one-hop transition** [default weight]

Our one-hop transition [small weight] less responsive, more smooth

Future Work: Optimizing Blending Durations (c.f., [Wang+08])

dst

Future Work: Blend Tree

Blend Tree:

Each state can also be associated a dynamic mixture of motion clips **Challenge:** How can we precompute all the possible blends and store the results?

