
OptiMo: Optimization-Guided Motion Editing for Keyframe
Character Animation

Yuki Koyama Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{ koyama.y, m.goto }@aist.go.jp

Animation curve Animator’s controlControl handle

Seamless
iterative
editing

Figure 1. We present a new framework for animators to edit character motions by effectively using the power of numerical optimization. (Left) Concept
of the framework. As well as direct manipulation, animators can use controlled optimization to efficiently edit animation curves in the iterative editing
process. (Right) Example of edited motions using our proof-of-concept system, named OptiMo.

ABSTRACT
The mission of animators is to create nuanced, high-quality
character motions. To achieve this, the careful editing of
animation curves—curves that determine how a series of
keyframed poses are interpolated over time—is an important
task. Manual editing affords full and precise control, but re-
quires tedious and nonintuitive trials and errors. Numerical
optimization can automate such exploration; however, auto-
matic solutions cannot always be perfect, and it is difficult
for animators to control optimization owing to its black-box
behavior. In this paper, we present a new framework called
optimization-guided motion editing, which is aimed at main-
taining a sense of full control while utilizing the power of
optimization. We have designed interactions and developed
a set of mathematical formulations to enable them. We dis-
cuss the framework’s potential by demonstrating several usage
scenarios with our proof-of-concept system, named OptiMo.

ACM Classification Keywords
H.5.m Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; I.3.8 Computer Graphics: Applications

Author Keywords
Motion editing; computer animation; optimization;
computational design; physics.

c© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record
was published in Proceedings of 2018 CHI Conference on Human Factors
in Computing Systems (CHI ’18), https://doi.org/10.1145/3173574.
3173735.

INTRODUCTION
In the digital production of animated films, computer games,
etc., the mission of animators is to animate computer graph-
ics characters plausibly and appealingly. Their task could be
decomposed into two stages: keyframing and curve editing.
Keyframing is the stage in which animators define key poses at
several time points (i.e., keyframes). Curve editing is the stage
in which animators manipulate animation curves to define
how key poses are interpolated between keyframes. Whereas
keyframing is important as it defines the basic motion scenario,
curve editing is also important for achieving well nuanced ani-
mations; animations using the same keyframing can produce
very different impressions, depending on how the animation
curves are edited.

Manually creating plausible animations requires tedious and
unintuitive trials and errors of animation curve editing. It
requires to explore a high-dimensional search space by ma-
nipulating many control handles (note that a human pose is
already high-dimensional and a human motion is even higher-
dimensional). Additionally, it is difficult to predict the quality
before actually modifying the animation curves and seeing the
new motion, because the effect of manipulating a parameter
is often indirect. Furthermore, plausible animation requires
adherence to certain high-level rules such as physics, which
makes the task even more complex.

Numerical optimization is a powerful tool and has the poten-
tial to fully automate the process of animation curve editing.
By mathematically formulating the search space (i.e., which
parameters should be adjusted) and the objective (i.e., how
the motion should be) of the curve editing, an optimizer can
automatically and simultaneously optimize the target parame-
ters, which are otherwise manipulated one-by-one manually.

1

https://doi.org/10.1145/3173574.3173735
https://doi.org/10.1145/3173574.3173735


This approach could release animators from the difficulty of
handling the high-dimensional problem.

However, automatic solutions cannot always be perfect be-
cause any objective function cannot perfectly represent anima-
tors’ aesthetic intention. Thus, it is inevitable that the resulting
animation needs to be manually edited by animators. How-
ever, owing to the black-box nature of optimization, editing
the optimized animation is often much more difficult than
editing the original one; animators have to begin by under-
standing what happened with the optimization. Furthermore,
some optimization may change the representation of anima-
tion curves (e.g., the manner of placing control handles for
editing curves), which makes it more painful to understand
and edit them. Thus, animators are rarely comfortable relying
on such a black box, and so the manual approach is mainly
adopted in practice.

Contributions
In this paper, we present a new framework for editing articu-
lated character motions, which we call optimization-guided
motion editing, where optimization is used as a tool for effec-
tively guiding animators’ manual motion editing, rather than
for fully automating the process (Figure 1). This framework
has the advantages of both automatic optimization and manual
editing; it borrows the power of numerical optimization to
manipulate multiple parameters simultaneously, yet tries to
give animators the sense of full control. The objective used for
optimization cannot be perfect but can be an “approximation”
of what animators want to create, so it can guide motion edit-
ing toward generally better directions, especially at the early
stage of exploration. This would help expert animators save
time and allow novices to more easily achieve high-quality
animations.

Our primary contributions are the design and mathematical
formulations for a proof-of-concept system, named OptiMo,
which enables optimization-guided motion editing. Specifi-
cally, to keep the sense of full control as much as possible
while interacting with optimization, we considered the follow-
ing three design goals for the system (Figure 2):

Editability. The optimized motion should be able to be easily
edited by animators for further manual refinement.

Controllability. The optimization behavior should be able to
be controlled by animators as flexibly as possible.

Transparency. The optimization process should be under-
standable for animators as intuitively as possible.

To achieve these goals, we developed the following features
for our system:

• It solves optimization problems without changing the place-
ment of the control handles that the animator defined in the
keyframing stage. This is useful for preserving editability
and for enhancing transparency.

• It allows animators to control the optimization behavior
via simple interface (e.g., sliders). To further increase con-
trollability, some optimization controls are designed to be

Input
motion

Edit

Animator

…

Optimizer

Output
motion (     )

Figure 2. Illustration of our design goals: (1) the output motion should
remain editable for further refinement, (2) the optimization should be
controllable by the animator, and (3) the process should be transparent.

interactive; animators can intervene in the optimization pro-
cess during running it.

• It visualizes certain aspects of the optimization for enhanc-
ing transparency. This includes the visualization of the opti-
mization process (not just the result) and the visualization
of how the current motion is evaluated by the optimizer.

We discuss the potential of optimization-guided motion editing
through demonstrating several usage scenarios using our proof-
of-concept system. We also report the feedback comments
from expert animators obtained through an informal interview.

RELATED WORK

Character Motion Editing
Character animations are usually created by either captured or
keyframed motions. For realistic humanoid characters, motion
capture is mainly used because it is effective for creating
realistic motions. One common problem with this approach
is the difficulty of editing motions once they are captured,
although researchers have tackled this problem (e.g., [33, 27]).
Apart from the editability issue, there are many cases in which
motion capture is not effective. First, captured motions are
often unsuitable for stylized characters (e.g., those in Pixar’s
feature films) because the mismatch of body balance may
cause perceptual incongruity and captured motions may be too
realistic for stylized characters. For non-humanoid characters
(e.g., creatures), it is not easy to capture their motions or
apply captured motions performed by human actors to them.
Additionally, it is difficult to capture highly acrobatic motions.

Thus, for such cases in which motion capture is not effective,
animators create motions from scratch, which is our target sce-
nario. Using dedicated systems such as Maya [2], animators
create key poses at several key frames, and then adjust how
they are interpolated by editing the animation curves. Both
stages involve adjustment of many parameters, and so require
expertise for exploring such a high-dimensional search space.
Researchers have developed systems for supporting this task;
for example, sketch-based interaction can help animators in-
tuitively explore this search space [16, 8]. In this work, we
investigate the use of optimization to support this exploration.

Several works focused on the creation of key poses. Tangible
devices have been developed for setting key poses of various
characters [13, 19]. Some methods enable posing by sketching
line-of-actions [29] or gesture drawings [6]. Our framework
focuses on the stage of curve editing, which comes after the

2



posing stage, and so setting key poses is out of our scope. Note
that our framework is complementary to these techniques.

Editing animation curves plays an important role in determin-
ing the quality of motions, but few studies have tackled this
aspect. Rather than supporting interactive curve editing, au-
tomatic synthesis of interpolation curves between keyframes
has been investigated. This approach is called space-time
constraints [37, 14]. However, this approach is not preferred
in practical workflow because generated motions are difficult
to edit. In contrast to this, we aim at achieving interactive
exploration by animators with the support of iterative editing.

A method, called rig-space physics [17], is similar to ours
in terms of maintaining the editability of resulting motions.
It generates secondary motions for passive parts (e.g., a fat
character’s belly shaking because of a primary motion, such
as walking) by using elastic simulation. This simulation is per-
formed using artist-defined rig parameters; any deformation
is represented as a combination of rig parameters, enabling
intuitive editing by animators after generation. In the same
spirit, but taking a different approach, our framework not only
preserves the original rigs (i.e., we do not change skeletal
structures) but also preserves the control handles of the anima-
tion curves defined in the keyframing stage. Additionally, we
target characters’ active motions rather than their passive ones,
and we use optimization to support edits rather than physical
simulation to generate new motions.

Shapiro and Lee [32] presented an animation authoring sys-
tem that guides animators based on visualization of charac-
ters’ physical properties (e.g., the center of mass and angular
momentum). The motivation and the system design are over-
lapped to ours; whereas using a high-level concept (physics in
their case and optimization in our case), it allows animators
to maintain “a fine-grained level of control” unlike other au-
tomatic methods to achieve practicality in actual production.
Whereas their system only provides visualization and does not
manipulate any parameters automatically, our framework semi-
automatically manipulates many parameters with the control
of animators, which is more challenging for keeping the con-
trol, and thus requires non-trivial interaction design. Note that
their focus is the support of editing whole-body movement
paths (e.g., matching the path of the center of mass with a
ballistic trajectory) and it does not explicitly guide how the
character’s poses and timings should be nuanced. In contrast,
our framework supports it via optimizing animation curves.

Some methods support editing and authoring of two-
dimensional (2D) animations [22, 9]. Although our work
is primarily targeted at three-dimensional (3D) animations,
where the degrees of freedom are often much larger than 2D,
we believe that the concept and interactions of optimization-
guided motion editing could be transferred to 2D cases, which
we leave as a future work.

Optimization-Based Design
Researchers have shown many design applications in which
numerical optimization enables new designs or new design
workflows that are otherwise difficult. This paradigm is often
referred to as computational design. Some methods are fully

automatic; for example, spinning top design [4] and keyboard
layout design [21] can be automatically generated once the
user specifies necessary inputs.

Other methods involve interaction with optimizers during de-
sign sessions, and ours fits into this category. Local opti-
mization (e.g., the steepest descent method) can be used for
gradually guiding a design toward better directions even dur-
ing user manipulation [23, 35]. Optimization can also be used
for generating alternative designs as suggestions; DesignScape
[28] and Sketchplore [34] are systems for authoring graphic
designs with optimized layout suggestions. From the view-
point of how users interact with optimization, MenuOptimizer
[5] has several similarities to our approach, although the target
domain is quite different; the system offers visualization of the
metrics and control of the objective function. Optimization
is also useful for converting physically infeasible inputs into
feasible ones; Airways [12] uses optimization for designing
physically feasible quadrotor trajectories from casual sketches.
Our system adopts a physics-based cost function that is mini-
mized in the optimization and thus can guide target motions
in physically plausible directions, as explained later.

Our work contributes to this research area by presenting the
first system for optimization-guided design in the motion edit-
ing scenario. We investigate the necessary interaction design
and mathematical formulations for this specific scenario.

TARGET PROBLEM

Character Representation
Characters in computer animation are articulated by control-
ling the animation rig, which is a generic term for indicating
a set of artist-defined variables that parametrizes the charac-
ter’s pose [17, 18]. Several types of rig parameters are used
together in the production process; for example, blendshapes
is often used for manipulating relatively detailed poses such as
facial expressions [25]. Among them, skeletal rig is probably
the most basic rig system, in which the pose of a character
is controlled by a tree structure called a skeleton: a set of
bones connected by joints. In this study, we test the concept of
optimization-guided motion editing using skeletal animation,
because it is simple and widely used.

By assuming that bones are rigid (i.e., do not change their
lengths), a character’s pose is fully specified by the orientations
of the joints. Each joint orientation is controlled by either
Forward Kinematics (FK) or Inverse Kinematics (IK). In FK,
the orientation of a joint (specified by Euler angles in our
implementation) is considered as the rig parameter that should
be tweaked by animators. In IK, the target position of a joint,
called the end effector, is considered as the rig parameter; in
this case, the orientations of intermediate joints are derived by
solving IK [7]. See Figure 3 (Left) for an example. Usually, a
character is controlled by using both FK and IK; for example,
spine and neck are often controlled by FK, and arms and legs
are often controlled by IK with hand or foot target positions.

Animation Curve Representation
An animation curve interpolates keyframed rig values (i.e.,
pairs of a rig value and a time point) over time. For this,

3



End e�ector Tangent handle

Key point Control handle

FK IK

Figure 3. (Left) Example of a skeletal rig. The skin mesh is bound to the
internal skeleton. Animators manipulate either the joint angles in for-
ward kinematics (FK) or the end effector positions in inverse kinematics
(IK). (Right) An animation curve and the terms used in this paper.

we chose the representation based on piecewise cubic Bézier
curves because it is widely used in animation software [2, 1].
The entire curve passes through several key points. A partial
curve between two key points is called curve segment, which
is a single cubic Bézier curve. We define a control handle to be
a manipulatable handle consisting of a key point (a pair of a rig
value and a time point) and a tangent handle (Figure 3; Right).
Key points determine the end points of each curve segment,
and tangent handles control the curves shapes. Defining key
points corresponds to the keyframing stage, and manipulating
tangent handles corresponds to the curve editing stage.

Task Goal
The goal of curve editing is to make the motion plausible and
appealing by adjusting the tangent handles. This is usually
done by manual one-by-one iterations of the following process:
manipulate a tangent handle, watch the motion, and go to the
next tangent handle until the motion becomes satisfactory.
This task is not only tedious but also complicated owing to
the high-dimensionality and the indirect effects among rig
parameters. For example, suppose that a humanoid character
is waving his arm. Even if the shoulder joint is the primary
moving part, it affects other body parts to keep the balance
from the viewpoint of physics, suggesting that even a simple
motion requires to consider the indirect effects.

OPTIMIZATION-GUIDED MOTION EDITING

Design Goals
We propose to utilize numerical optimization as a tool for
guiding manual motion editing. However, naı̈vely applying
optimization to a target motion is not desirable because it
deprives animators of full and precise control. To maintain a
sense of full control as much as possible while interacting with
optimization, we set the following design goals (Figure 2):

The optimization output should remain editable. The re-
sulting motion should be easily editable by animators. This
enables further refinement, which is crucial in practical
workflow. In particular, it is extremely important not to
change the control handle definitions before and after the op-
timization. This is because every control handle is set (more
or less) “intentionally” by the animator in the keyframing
stage, and thus the placement of the control handles before
optimization could be the most convenient representation
for the animator who performed the keyframing.

The optimization behavior should be controllable.
Animators should be able to control the behavior of

Curve editor

Animation viewJoint hierarchy view

Current frame

Cost visualization

Figure 4. Appearance of OptiMo, a proof-of-concept system for
optimization-guided motion editing.

optimization as freely and precisely as possible. To this
end, the system must provide ways for animators to
intervene in the optimization process, possibly by tweaking
several control parameters. Additionally, it is desirable
for the intervention to be interactive during running the
optimization, thereby allowing fine-grained adjustment.

The optimization process should be transparent. Optimi-
zation is an abstract concept and it may be difficult for those
who are not familiar with mathematics to understand why it
works. However, it is necessary for animators to understand
how it works; otherwise, animators cannot effectively
decide when and how to utilize the optimization during
editing. To this end, the system must provide information
about what the optimization will do or is doing in an easily
understandable way.

OptiMo: A Proof-of-Concept System
Based on the above considerations, we designed and devel-
oped a proof-of-concept system of optimization-guided motion
editing, named OptiMo (Figure 4). Similar to most motion
authoring software, our system has a curve editor1 in its inter-
face, in which the rig parameters of the selected joints or IK
handles are shown as animation curves, and animators can edit
the curves by manipulating the control handles. The selection
of joints and IK handles is done via the joint hierarchy view.
At any time, animators can trigger optimization for improving
the animation curves. Each optimization finishes typically in a
few seconds or up to ten seconds, depending on motions. Once
the optimization is done, animators can immediately begin
manual refinement or run the optimization again with a differ-
ent control setting. For better interaction with optimization,
the system was designed to have the following features.

Preservation of Control Handles (Editability + Transparency)
The system preserves the placement of the animator-defined
control handles during and after the optimization; the opti-
mization adjusts the tangent handles and does not touch the
key points defined in the keyframing stage. It does not change
the curve representation, nor re-define control handles auto-
matically. This allows animators to easily understand what the
1This widget is sometime called by different names, such as Graph
Editor in Maya [2] and FCurves Window in MotionBuilder [3].

4



High

Low
Figure 5. Cost visualization on the curve editor using a color map. High-
cost regions (around the center in this figure) indicate that the system
considers the current motion to be undesirable around there, and the
optimization will try to resolve these undesirable moments.

optimization did, and thus allows them to immediately begin
to edit the resulting curves for fine-grained refinement or undo
the optimization if necessary.

Optimization Process Visualization (Transparency)
Not only does it provide the output of the optimization, the sys-
tem also visualizes the intermediate states of the optimization
as real-time animation in the curve editor. That is, animators
can see how the optimization explores possible motions and
searches for a solution. Furthermore, as our system preserves
the control handles during the optimization and manipulates
the handles that animators otherwise manipulate, animators
can understand the visualization as a “fast forward” of a man-
ual search performed by someone else. This allows animators
to understand the concept of optimization, which increases
transparency. This animated visualization also helps animators
easily notice unintentional modifications (if any).

Cost Visualization (Transparency)
The optimization process visualization facilitates understand-
ing of how the optimization finds a solution; however, it does
not tell why the solution is chosen. To make it transparent, the
system shows the distribution of cost values over time in the
curve editor using a color map (Figure 5). This distribution
indicates what the system considers “good” or “bad;” by opti-
mization, the system tries to minimize the total “badness” in
the motion. As explained later, we adopted a physics-based
cost function [31] to quantify the goodness of motions.

Interactive Regularization (Controllability + Transparency)
Naı̈ve optimization sometimes modifies the motion so much
that it might break the original intention. To prevent this,
the system allows animators to “regularize” the optimization
behavior, or to control how much the optimization preserves
the original motion. This can be done by adjusting a single
regularization weight parameter via a slider interface; a larger
weight makes the optimization more conservative, and vice
versa. Furthermore, the system allows interactive specification
of the weight parameter during optimization; according to
the slider manipulation, the curves and the preview motion
are updated in real time using the regularized optimization.
This interactivity supports animators not only to control the
optimization easily and precisely, but also to understand how
the regularization works. Figure 6 illustrates this feature.

Per-Joint Regularization (Controllability)
The system allows animators to control the strength of regular-
ization for each joint separately. For example, if the animator
is not satisfied with the result of an optimization because

Strong regularization

Medium regularization

Weak regularization

Figure 6. Interactive specification of regularization weight. The original
motion is more preserved when a larger weight is specified, and vice
versa. By the real-time preview of the optimized curves and motions, the
user can intuitively seek a preferable weight value for controlling the
optimization behavior.

Click

Optimize

Undo

Increase weight

Figure 7. Per-joint regularization. In this example, the animator is un-
satisfactory with the result of optimization because the elbow is modified
in an undesirable manner (indicated by a red arrow). This can be fixed
by undoing the failed optimization, setting a large regularization weight
for the elbow joint, and running the optimization again.

some specific joints are excessively modified from the original
motion, he or she can undo the optimization, set a higher reg-
ularization weight for each of these specific joints, and then
re-run optimization to obtain a more desirable result. Figure 7
illustrates an example of the usage of this feature.

Time-Varying Cost Control (Controllability)
Because no cost function is perfect, the visualized cost distri-
bution may be unsatisfactory for the animator; it can provide
unintentionally high cost values for certain moments. Ap-
plying optimization with this unsatisfactory cost distribution
results in a motion that does not correctly reflect the anima-
tor’s intention. To prevent this, the system has a feature called
time-varying cost control; it allows animators to specify a
time-varying weight distribution, which is a smooth distribu-
tion of weight values over time, to tell the system to ignore
costs in low-weight periods. Figure 8 illustrates this feature.
Furthermore, to make adjustments to the weight distribution
easier, there is an interactive mode; it can run optimization in
real time during adjustment.

5



Time-varying weight dist.
for cost control

Original motion Optimized motion 
without cost control

Optimized motion 
with cost control

Figure 8. Time-varying cost control. If the visualized cost distribu-
tion does not correctly reflect the intention at some periods, the user can
control where to ignore the cost function by specifying a time-varying
weight distribution. Here, the darker regions in the curve editor mean
lower weights, and thus the costs of these regions will be ignored in the
optimization.

Time

Rig value

Figure 9. Illustration of the parameters of a control handle. The time t
and the value v are provided at the keyframing stage. The task of curve
editing is to manipulate the tangent handle parameters: ∆tf, ∆tf, and θ.

BASIC OPTIMIZATION FRAMEWORK WITH EDITABILITY
In this section, we describe the basics of the optimization
framework, which is formulated such that the editability is
maintained even after optimization. At this moment, we do not
consider controllability; we will describe how to add control
over optimization in the next section.

Parametrization
Suppose that there are n control handles in the curve editor.
In the keyframing stage, animators specify the time t and the
value v for each control handle. The remaining degrees of
freedom of the i-th control handle, which should be adjusted
in the curve editing stage, can be parametrized as

xi =
[
∆tb

i ∆tf
i θi

]T
∈ R3, (1)

where ∆tb and ∆tf are the backward and forward displacements
of the tangent handle, respectively, and θ is the tangent angle.
See Figure 9 for an illustration of the parametrization. By
concatenating these vectors over all the target control handles,
we can describe the motion as a single vector:

x =
[
xT

1 · · · xT
n

]T
∈ R3n. (2)

Now, the goal is to adjust the vector x such that the motion
becomes optimal. Let X ⊂ R3n be the domain for this search
of the vector x. To ensure that the tangent handles are always
valid, the search space X is defined such that it satisfies the
condition: ∆tb

i ≤ 0, 0 ≤ ∆tf
i , and − π2 ≤ θi ≤

π
2 for i = 1, . . . , n.

Objective Function
We formulate the optimization problem as

x∗ = arg min
x∈X

C(x), (3)

where C(·) is a cost function that leads the target motion in
a “desirable” direction, and x∗ is an optimal motion obtained
through the optimization. The choice of C(·) is arbitrary as
long as C(·) appropriately penalizes undesirable motions (i.e.,
returns a large cost value) and does not penalize desirable mo-
tions (i.e., returns a small cost value). In this work, we chose
a physically inspired cost function as the first step, whereas
other cost functions are possible.

We assume that the cost function can be represented as an
integral of an “instantaneous” cost over time. Here, the in-
stantaneousness means that a temporally localized cost value
can be evaluated for every moment. From a mathematical
viewpoint, this assumption is represented as

C(x) =

∫
C(x, t)dt, (4)

where C(x, t) evaluates the cost for the motion x at the time
t. Note that this assumption has been made in many previous
successful methods (e.g., [31]).

We implemented a well-established cost function, which was
used by Safonova et al. [31]. Here is an intuition of this cost
function: it penalizes large torques concentrating on specific
joints or moments. Mathematically, it is formulated as the sum
of squared torques over all the joints:

C(x, t) =
∑
j∈J

‖τ j (x, t)‖2, (5)

where J is the set of all the joints and τ j (x, t) is the torque on
the j-th joint for the motion x at the time t.

The torques are estimated from the motion and the mass prop-
erties of the character. This process is called Inverse Dynam-
ics [10, 26], and our implementation uses an existing library,
RBDL [11]. To calculate the mass properties, we assume that
each bone is a rectangular box made of a uniform material.

Solver Details
The analytic derivative of the objective function is not avail-
able in our problem setting. Thus, we use BOBYQA, a local
derivative-free optimization algorithm [30] implemented in
the NLopt library [20]. The motion before optimization is set
as the initial solution. Note that we have tested several other al-
gorithms and empirically found that BOBYQA worked well in
our setting. We also found that local optimization algorithms
are preferable to global ones because global ones are typically
slower and often produce motions that are too different from
the original motion, which is often undesirable. Moreover,
choosing local algorithms is important for the visualization
and interaction to be intuitive; most local algorithms update
the target parameters gradually, which is easier to understand.

Discussions
In Figure 10, we show a result of applying the optimization to
a motion of a stick figure waving his arm. The optimization

6



Original motion

Optimized motion
(w/o any control)

Figure 10. Failure example of optimization without any control. (Top)
The original motion before optimization. (Bottom) An optimized motion
without any control. In this case, the stick figure’s elbow is undesirably
bent for minimizing its torque. This is natural from the viewpoint of
physics, but this is not likely to be the animator’s intent.

successfully minimized the torque concentration and provided
a physically plausible motion; however, the resulting motion
is apparently unnatural because the elbow is bent in a biologi-
cally impossible way. This is caused by the fact that the cost
function defined by Equation 5 (and probably any other cost
function) is not perfect. To overcome this issue and effectively
utilize the optimization, control of its behavior is necessary.

ADDING CONTROL OVER OPTIMIZATION
In this section, we present the mathematical formulations for
adding controls to the optimization framework described in
the previous section.

Control by Regularization
We introduce a regularization term that prevents the resultant
motion from being too far from the original motion. By adding
this term to the objective function in Equation 3, the original
intention is taken into account. Any regularization formulation
is acceptable, provided that it penalizes the motion that is far
from the original motion; in our implementation, we designed
the regularization term D as follows:

D = Dparam + Dtraj, (6)

where Dparam is called parameter difference and Dtraj is called
trajectory difference.

Parameter Difference
The first term measures the difference between the original
motion xorig and the resulting motion x in the parameter space.
We formulate it as a weighted squared Euclidean distance
between x and xorig:

Dparam = (x − xorig)T diag(wparam)(x − xorig), (7)

where diag(w) is a diagonal matrix whose i-th diagonal ele-
ment is wi, and wparam ∈ R3n is a weight vector for controlling
the behavior of regularization, which is specified by the ani-
mators indirectly through interface. Each element of wparam

separately controls how much the optimization changes the pa-
rameter in the corresponding dimension. If the weight value is

set to zero, the optimization freely changes the parameter with-
out considering the original motion. If it is set to an infinitely
large value, the optimization does not change the motion.

Trajectory Difference
The second term measures the difference between the trajecto-
ries of the joints. We formulate this as

Dtraj = wtraj
∫ ∑

j∈J

∥∥∥p j (x, t) − p j (xorig, t)
∥∥∥2

 dt, (8)

where p j (x, t) is a function that returns the position of the j-th
joint at the time t when the motion parameter x is applied, and
wtraj ∈ R is a weight parameter for controlling the strength of
the regularization.

Interface for Specifying Weights
It is technically possible to let animators specify all the values
of wparam and wtraj directly; however, this may not be tractable.
Therefore, our system uses a single slider, as we showed in the
interactive regularization feature, to simultaneously set same
values to the weights. In addition to this, to enable the per-joint
regularization feature, the system increases the values of the
corresponding dimensions of wparam according to the per-joint
slider values specified by the animators.

Control over Cost Function
To let the user control the cost function, we extend the cost
function representation in Equation 4 as

Ĉ(x) =

∫
wcost(t)C(x, t)dt, (9)

where wcost(t) is a time-varying weight function. When w(t)
provides a small value for a time t, the cost at the time t is
less influential during the optimization, and vice versa. The
representation of this function can be arbitrary and freely
specified by the user. Considering the balance between the
expressiveness and the easiness of specification, we chose the
following representation: wcost(t) = max

(
1 −

∑
k∈K k(t), 0

)
,

where k(·) is a Gaussian kernel whose center and bandwidth
are specified by the animators, and K is the set of kernels
defined by the user. For example, in the case of Figure 8, the
number of kernels is one. Note that, if no kernel is specified,
the weight function wcost(·) always returns 1; in that case, Ĉ(·)
in Equation 9 is equivalent to C(·) in Equation 4.

EXAMPLE USAGE SCENARIOS
To demonstrate our approach, we created three example mo-
tions using our system (see the video figure for the actual
editing processes and motions). Note that the video clips
(except for those marked as fast forwarding) were real-time
screen captures, which were taken on a MacBook Pro with
3.3 GHz Intel Core i7. As the video shows, the optimization
typically converges in a few seconds, and converges within a
maximum of around ten seconds.

Stick Figure Waving His Arm
In this scenario, we designed a motion of a humanoid stick
figure waving the left arm. The left shoulder, left elbow, right

7



shoulder, right elbow, and spine were articulated by FK. The
total number of the parameters for curve editing was 78.

By applying optimization to all the parameters without any
control, we could obtain a physically plausible motion; it
modified the spine’s motion drastically to decentralize the
torque on the left shoulder, and it made the left elbow flexible
(see the video figure). However, this motion was undesirable
because it looked too different from the original motion, which
was not our intention, and moreover, the elbow was bent in
an unrealistic way (c.f., Figure 10). To fix these issues, we
used the per-joint regularization feature; specifically, we set
weights for the spine and elbow joints (c.f., Figure 7). We then
re-ran optimization, and obtained a satisfactory motion.

Conductor for a Musical Performance
The goal of this scenario was to create a motion of a cartoon
character conducting for a musical performance. The conduc-
tor moves his left arm according to the beats of the music.
For this scene, we specifically wanted to create sharp move-
ment on the beats and smooth movement for other moments to
make the motion look more synchronized with the music. The
keyframes were set on the beats and at the middle of the beats.
The left arm was controlled by IK, and the other joints were
controlled by FK. The total number of parameters was 54.

The initial motion was not very organic (Figure 11; Initial mo-
tion). Simply applying the optimization without any control
produced a plausible animation, but it was so smooth that we
did not feel beats from it (Figure 11; Naı̈ve opt.). To tell the op-
timizer that we accept large torques on the beat moments, we
used the feature of time-varying cost control. Specifically, we
set the weight kernels on the beat frames (Figure 11; Weight).
With this control, the optimization successfully produced a
motion with sharp movements on the beats and physically
natural transitions between them (Figure 11; Controlled opt.).
Please see the accompanying video figure, in which an effec-
tive comparison of these motions is shown with music.

Fox Tail
The goal of this scenario was to create a motion of a fox tail.
We performed keyframing so that his tail moves from the rest
pose to the right, to the left, and finally to the rest pose again
(Figure 12; Initial motion). The tail had three joints at its root,
middle, and tip, which were controlled by FK, and the total
number of parameters was 27.

First, we applied the optimization without any control. The
resulting motion looked physically plausible, but it was so
different from the initial motion that we were not satisfied
with it (Figure 12; Naı̈ve opt.). Thus, we decided to use
the interactive regularization feature; we tweaked the weight
parameter for regularization, such that the resulting motion
was well balanced in terms of the preservation of the original
intent and the physical plausibility (Figure 12; Controlled opt.
#1). The obtained motion was satisfactory, but we noticed
that this could be improved if the motion from right to left
was speedier. To achieve this, we used the time-varying cost
control feature; specifically, we put weight kernels between
the keyframe where the tail is on the right and the keyframe
where it is on the left (Figure 12; Weight). We again performed

(on beat) (on beat)

Controlled
opt.

Weight

Naïve opt.

Initial 
motion

Figure 11. Example scenario: a music conductor. The naı̈ve opti-
mization produced an excessively smooth motion that did not convey the
beats well. By using the time-varying cost control feature, the optimiza-
tion could create sharp movements on the beats.

the optimization with regularization, and finally obtained a
desirable motion (Figure 12; Controlled opt. #2). Figure 13
shows a comparison of these motions. It is notable that the
Follow Through effect [24, 22] (in this case, the tail root leads
the motion and the tail tip follows it with a delay) is naturally
achieved in the optimized motions.

FEEDBACK FROM EXPERTS
Apart from the demonstration of effective usage scenarios that
we showed in the previous section, we also validated our ap-
proach through an informal interview with domain experts.
Specifically, we interviewed two professional animators (A1
and A2), who are familiar with 3D character animation au-
thoring. We interviewed them together. The interview lasted
approximately one hour, and it was conducted as follows. First,
we asked a question: “If you can use a new intelligent Maya
plug-in that improves curve editing, what characteristics do
you expect it to have?”2 We then explained our design goals
(editability, controllability, and transparency) and asked them
about these goals. Next, we explained our system and its fea-
tures using the scenarios shown in the previous section, and
asked them to provide comments for each feature. Finally,
we asked them to provide free comments about our system
and general character animation. Note that the goal of this
interview was not to measure any specific quantities but to
obtain qualitative feedbacks on our approach.

Through the interview, we observed that both the interviewees
could easily understand our design goals (editability, control-
2We conducted the interview in the interviewees’ native language,
and thus this question and the following comments are the translation
from the original language into English.

8



Controlled
opt. #1

Weight

Naïve opt.

Initial 
motion

Controlled
opt. #2

Figure 12. Example scenario: a fox tail. Simply applying the opti-
mization produced a physically plausible but excessively different mo-
tion. This was solved by using the interactive regularization feature. Ad-
ditionally, we used the time-varying cost control feature to speed up the
motion from the right to the left. The 3D model is provided by Daniel
Moos under CC BY 4.0.

Controlled
opt. #1

Naïve opt.Initial 
motion

Controlled
opt. #2

Figure 13. Comparison of the fox tail movements shown as skeletons
(top views). The speedy movement in the controlled opt. #2 (indicated by
the blue arrow) was achieved by the time-varying cost control feature.

lability, and transparency) and all the features of our system
based on a brief introduction.

In response to the first question that we asked before explain-
ing our design goals, A2 mentioned about the difficulty of
achieving physically plausible motions, and she wanted a plug-
in that could “add physical nuance [to animation curves]
appropriately.” A1 also agreed with the sentiment. Note that
we had not told them by this moment about the fact that our
system handled physics.

In the following, we summarize the obtained comments sorted
by the contents rather than by the chronological order.

Comments on Editability
For the feature of preserving the control handles to ensure
editability, A1 said this feature was “indispensable” and also
stressed that “[I] can never imagine the situation where it is de-

sirable that the system automatically adds keys [to animation
curves].” A2 also agreed with the importance of preserving
the handles, and added “More specifically, it is OK for the
[tangent] handles to change, but the keyframes (key points)
should not change [through optimization],” which validates
our design.

Comments on Controllability
All the features related to controllability were strongly appre-
ciated by both the interviewees. For example, A2 said “I would
be puzzled if I can’t use this (the per-joint regularization fea-
ture).” When seeing the fox tail animation edited with the
time-varying cost control feature (Figure 12; Controlled opt.
#2), A1 said that this feature would be useful “when I want to
add subtle nuance” and A2 said she “often wants to add [such
nuance]” in practical scenarios. For the regularization feature
and the time-varying cost control feature, A1 said that the in-
teractivity of these features could make adjustment “easier”
and “less stressful.”

Comments on Transparency
Both the optimization process and cost visualization features
were appealing to the interviewees. For example, A1 said
that the optimization process visualization “was very interest-
ing” because she could see how the system performed trials
and errors. The interviewees were, however, doubtful as to
wether these features could improve “ease of use” (A1) or “ef-
ficiency” (A2). An unexpected yet notable point was that these
features provided the interviewees with inspiration on how
to use and improve our system. Regarding the optimization
process visualization, A2 said she wanted to stop the optimiza-
tion in the middle of convergence and obtain the intermediate
result (rather than just wait for convergence) and suggested
the implementation of such a function, while A1 suggested the
implementation of a slider interface to continuously roll back
the optimization process. Regarding the cost visualization, A2
wanted to customize the cost function by herself rather than
by using the pre-defined cost function; she raised an example
of having a character with a joint that could only move within
a limited range of orientations owing to an injury, saying that
it would be very nice if she could input such character-specific
properties into the cost function definition. Another notable
point is that the two interviewees, who were not familiar with
either applied math or computer science, could easily under-
stand the concept of numerical optimization by observing the
system behavior. We believe this is (at least partially) because
the system is transparent.

Comments on Potential Usages in Production
The interviewees mentioned potential uses of our current sys-
tem in professional production. Whereas both the intervie-
wees agreed that the edited motion of the conductor scene
(Figure 11; Controlled opt.) was “much improved” (A1) com-
pared to the original motion (Figure 11; Initial motion), they
commented that the quality was still unsatisfactory for a main
character in the production. Instead, they commented that
it could be used for making “subcharacters’ motions” (A2)
or in “projects with only limited time” (A1) for saving time.
“It would be great [if I can] use the [saved] time for [other]
important characters,” A1 added. In contrast to the conductor

9



scene, they were very excited about the quality of the fox tail
animation. Both of them agreed that it was possible to use
it even in professional production. A1 said, “I think it (the
current system) is suitable for less active parts” such as a fox
tail or an arm that does not produce a primary motion. This
comment probably stems from the fact that our current system
uses a physics-based cost function. As for the Follow Through
effect in the fox tail motion, A2 said, “It is possible to provide
it (the Follow Through effect) by hand, but it requires much
tweaking to make it (the motion) look natural,” so she appreci-
ated our system. She also commented that it is very tedious to
move a girl’s skirt because it often has many bones to tweak,
so our current system would be useful for such a case as it can
easily provide physically plausible motions by only specifying
key poses at several keyframes.

Other Comments
A1 commented that it seemed to be “easy for novices to create
[plausible motions]” with this system. As for the timing of the
optimization usage, A2 said, “[I] might use it at the beginning
[of the editing]” rather than the end of editing. A1 agreed with
it, and she added that she would use the result as a starting
point for manual refinement. These comments further con-
firmed the importance of editability. For the cost function, A2
wanted it to consider project-specific styles of motions; “Each
art project has a specific style of motions,” and “it would be
nice if it automates [the process of applying such styles]” by
using a customized cost function, A2 said.

DISCUSSIONS
Summary of Interview
First, animators could understand all the features of our sys-
tem by a brief introduction. All the features of editability
and controllability seem indispensable. The features of trans-
parency are welcomed, but do not seem to improve either ease
of use or efficiency; instead, they could provide animators
with additional inspiration for uses of our system. The cur-
rent cost function is not satisfactory and needs improvement
to achieve production quality. The current system could be
useful in projects with many characters or with limited time,
or for motions of non-primary body parts such as fox tails.

Physics Simulation vs. Keyframe Animation
As mentioned in the interview, our system was useful to plausi-
bly create the Follow Through effect in some scenarios. Phys-
ical simulation could also be used to create similar effects,
but it produces only physically “correct” motions and does
not provide appropriate editability once the simulation is com-
pleted. This makes it difficult or impossible for animators to
add artistic intention to motions. In contrast, keyframe anima-
tion offers the editability with full and precise control, which
helps to achieve the desired motions.

Integration and Evaluation in Professional Workflow
We conducted an interview with domain experts and validated
our approach with the proof-of-concept system. The next step
would be the integration and testing in professional workflow.
Rigorous evaluation in such workflow is necessary. To meet
the production-level requirements, we need to address some
engineering issues (e.g., support for general rig systems, more

appropriate estimation of physical properties, and integration
with other existing tools).

Different Cost Functions and Constraints
We chose and implemented a simple physics-based cost func-
tion [31] (Equation 5) because we supposed that there was a
demand for the support of creating physically plausible mo-
tions, which was confirmed in the interview. In the future, we
plan to develop various types of cost functions to meet other
production needs. For instance, as mentioned in the interview,
developing a cost function that considers specific motion styles
is important future work; for this, machine learning-based ap-
proaches (e.g., [15]) could be used. Considering volumetric
deformation [17] may improve the motions of fatter characters,
and considering biological properties [36] (e.g., minimization
of muscle actuation energy) may be useful to produce biologi-
cally natural motions. In addition to investigating other cost
functions, it is also interesting when constraints are incorpo-
rated into the optimization problem; for example, undesirable
penetrations could be avoided by adding a constraint that pro-
hibits penetrations in the resulting motions. Note that our
framework and interaction designs are independent of the
choice of cost functions or constraints.

Support of Keyframing
We focused on the curve editing stage, so the keyframing
stage is out of the scope. However, we believe that the use
of optimization can enhance the keyframing as well. It is
an important future work for investigating system designs to
achieve such optimization-guided keyframing.

Other Design Domains
We believe that some of the features we developed for our
motion-editing system are general enough and can be useful
in other design domains as well. For example, the interactive
regularization could be applied to various design frameworks
that involve continuous optimization (e.g., photo enhancement)
and the visualization features could be implemented in other
frameworks (e.g., 2D graphic design). We will explore such
potential by investigating domain-specific optimization and
visualization methods.

CONCLUSION
We presented a new framework called optimization-guided
motion editing, in which numerical optimization is utilized as
a tool for animators to effectively edit character motions. To
enable this, we set the three design goals: editability of the
optimized motion, controllability of the optimization behavior,
and transparency of the optimization process. Based on these
goals, we presented a set of interactions and their mathemat-
ical formulations, and developed a proof-of-concept system,
named OptiMo. We showed how this system could support
animators by demonstrating several usage scenarios. To vali-
date our approach, we interviewed domain experts using our
system, and obtained comments for each feature of the system
as well as its potential usages in the professional production.

Acknowledgments
We thank the two interviewees. This work was supported in
part by JST ACCEL Grant Number JPMJAC1602, Japan.

10



REFERENCES
1. Adobe Systems Inc. 2017. Adobe After Effects CC.
http://www.adobe.com/products/aftereffects.html.
(2017).

2. Autodesk Inc. 2017a. Maya.
https://www.autodesk.com/products/maya/overview.
(2017).

3. Autodesk Inc. 2017b. MotionBuilder. https:
//www.autodesk.com/products/motionbuilder/overview.
(2017).

4. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga
Sorkine-Hornung. 2014. Spin-it: Optimizing Moment of
Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4,
Article 96 (July 2014), 10 pages. DOI:
http://dx.doi.org/10.1145/2601097.2601157

5. Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and
Sabrina Hoppe. 2013. MenuOptimizer: Interactive
Optimization of Menu Systems. In Proc. UIST ’13.
331–342. DOI:
http://dx.doi.org/10.1145/2501988.2502024

6. Mikhail Bessmeltsev, Nicholas Vining, and Alla Sheffer.
2016. Gesture3D: Posing 3D Characters via Gesture
Drawings. ACM Trans. Graph. 35, 6, Article 165 (Nov.
2016), 13 pages. DOI:
http://dx.doi.org/10.1145/2980179.2980240

7. Samuel R. Buss. 2009. Introduction to Inverse
Kinematics with Jacobian Transpose, Pseudoinverse and
Damped Least Squares Methods. (2009). http://euclid.
ucsd.edu/˜sbuss/ResearchWeb/ikmethods/index.html

8. Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis,
Yeongho Seol, Seokpyo Hong, Haegwang Eom, Sunjin
Jung, and Junyong Noh. 2016. SketchiMo: Sketch-based
Motion Editing for Articulated Characters. ACM Trans.
Graph. 35, 4, Article 146 (July 2016), 12 pages. DOI:
http://dx.doi.org/10.1145/2897824.2925970

9. Marek Dvorožňák, Pierre Bénard, Pascal Barla, Oliver
Wang, and Daniel Sýkora. 2017. Example-based
Expressive Animation of 2D Rigid Bodies. ACM Trans.
Graph. 36, 4, Article 127 (July 2017), 10 pages. DOI:
http://dx.doi.org/10.1145/3072959.3073611

10. Roy Featherstone. 2008. Rigid Body Dynamics
Algorithms. Springer US. DOI:
http://dx.doi.org/10.1007/978-1-4899-7560-7

11. Martin L. Felis. 2017. RBDL: an Efficient Rigid-Body
Dynamics Library using Recursive Algorithms.
Autonomous Robots 41, 2 (Feb 2017), 495–511. DOI:
http://dx.doi.org/10.1007/s10514-016-9574-0

12. Christoph Gebhardt, Benjamin Hepp, Tobias Nägeli,
Stefan Stevšić, and Otmar Hilliges. 2016. Airways:
Optimization-Based Planning of Quadrotor Trajectories
According to High-Level User Goals. In Proc. CHI ’16.
2508–2519. DOI:
http://dx.doi.org/10.1145/2858036.2858353

13. Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec
Jacobson, Otmar Hilliges, and Olga Sorkine-Hornung.
2016. Rig Animation with a Tangible and Modular Input
Device. ACM Trans. Graph. 35, 4, Article 144 (July
2016), 11 pages. DOI:
http://dx.doi.org/10.1145/2897824.2925909

14. Michael Gleicher. 1997. Motion Editing with Spacetime
Constraints. In Proc. I3D ’97. 139–148. DOI:
http://dx.doi.org/10.1145/253284.253321

15. Keith Grochow, Steven L. Martin, Aaron Hertzmann, and
Zoran Popović. 2004. Style-based Inverse Kinematics.
ACM Trans. Graph. 23, 3 (Aug. 2004), 522–531. DOI:
http://dx.doi.org/10.1145/1015706.1015755

16. Martin Guay, Rémi Ronfard, Michael Gleicher, and
Marie-Paule Cani. 2015. Space-time Sketching of
Character Animation. ACM Trans. Graph. 34, 4, Article
118 (July 2015), 10 pages. DOI:
http://dx.doi.org/10.1145/2766893

17. Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski,
Robert Sumner, Stelian Coros, and Markus Gross. 2012.
Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72
(July 2012), 8 pages. DOI:
http://dx.doi.org/10.1145/2185520.2185568

18. Daniel Holden, Jun Saito, and Taku Komura. 2015.
Learning an Inverse Rig Mapping for Character
Animation. In Proc. SCA ’15. 165–173. DOI:
http://dx.doi.org/10.1145/2786784.2786788

19. Alec Jacobson, Daniele Panozzo, Oliver Glauser, Cédric
Pradalier, Otmar Hilliges, and Olga Sorkine-Hornung.
2014. Tangible and Modular Input Device for Character
Articulation. ACM Trans. Graph. 33, 4, Article 82 (July
2014), 12 pages. DOI:
http://dx.doi.org/10.1145/2601097.2601112

20. Steven G. Johnson. 2017. The NLopt
Nonlinear-Optimization Package. (2017).
http://ab-initio.mit.edu/nlopt

21. Andreas Karrenbauer and Antti Oulasvirta. 2014.
Improvements to Keyboard Optimization with Integer
Programming. In Proc. UIST ’14. 621–626. DOI:
http://dx.doi.org/10.1145/2642918.2647382

22. Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani,
and George Fitzmaurice. 2016. Motion Amplifiers:
Sketching Dynamic Illustrations Using the Principles of
2D Animation. In Proc. CHI ’16. 4599–4609. DOI:
http://dx.doi.org/10.1145/2858036.2858386

23. Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi.
2014. Crowd-powered Parameter Analysis for Visual
Design Exploration. In Proc. UIST ’14. 65–74. DOI:
http://dx.doi.org/10.1145/2642918.2647386

24. John Lasseter. 1987. Principles of Traditional Animation
Applied to 3D Computer Animation. SIGGRAPH
Comput. Graph. 21, 4 (Aug. 1987), 35–44. DOI:
http://dx.doi.org/10.1145/37402.37407

11

http://www.adobe.com/products/aftereffects.html
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/motionbuilder/overview
https://www.autodesk.com/products/motionbuilder/overview
http://dx.doi.org/10.1145/2601097.2601157
http://dx.doi.org/10.1145/2501988.2502024
http://dx.doi.org/10.1145/2980179.2980240
http://euclid.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html
http://euclid.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html
http://dx.doi.org/10.1145/2897824.2925970
http://dx.doi.org/10.1145/3072959.3073611
http://dx.doi.org/10.1007/978-1-4899-7560-7
http://dx.doi.org/10.1007/s10514-016-9574-0
http://dx.doi.org/10.1145/2858036.2858353
http://dx.doi.org/10.1145/2897824.2925909
http://dx.doi.org/10.1145/253284.253321
http://dx.doi.org/10.1145/1015706.1015755
http://dx.doi.org/10.1145/2766893
http://dx.doi.org/10.1145/2185520.2185568
http://dx.doi.org/10.1145/2786784.2786788
http://dx.doi.org/10.1145/2601097.2601112
http://ab-initio.mit.edu/nlopt
http://dx.doi.org/10.1145/2642918.2647382
http://dx.doi.org/10.1145/2858036.2858386
http://dx.doi.org/10.1145/2642918.2647386
http://dx.doi.org/10.1145/37402.37407


25. J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang,
Fred Pighin, and Zhigang Deng. 2014. Practice and
Theory of Blendshape Facial Models. In Eurographics
2014 – State of the Art Reports. DOI:
http://dx.doi.org/10.2312/egst.20141042

26. Xiaolei Lv, Jinxiang Chai, and Shihong Xia. 2016.
Data-driven Inverse Dynamics for Human Motion. ACM
Trans. Graph. 35, 6, Article 163 (Nov. 2016), 12 pages.
DOI:http://dx.doi.org/10.1145/2980179.2982440

27. J. McCann, N. S. Pollard, and S. Srinivasa. 2006.
Physics-based Motion Retiming. In Proc. SCA ’06.
205–214.
http://dl.acm.org/citation.cfm?id=1218064.1218092

28. Peter O’Donovan, Aseem Agarwala, and Aaron
Hertzmann. 2015. DesignScape: Design with Interactive
Layout Suggestions. In Proc. CHI ’15. 1221–1224. DOI:
http://dx.doi.org/10.1145/2702123.2702149

29. A. Cengiz Öztireli, Ilya Baran, Tiberiu Popa, Boris
Dalstein, Robert W. Sumner, and Markus Gross. 2013.
Differential Blending for Expressive Sketch-based Posing.
In Proc. SCA ’13. 155–164. DOI:
http://dx.doi.org/10.1145/2485895.2485916

30. Michael J. D. Powell. 2009. The BOBYQA Algorithm for
Bound Constrained Optimization without Derivatives.
Technical Report NA2009/06. Department of Applied
Mathematics and Theoretical Physics, Cambridge
England.

31. Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard.
2004. Synthesizing Physically Realistic Human Motion
in Low-dimensional, Behavior-specific Spaces. ACM

Trans. Graph. 23, 3 (Aug. 2004), 514–521. DOI:
http://dx.doi.org/10.1145/1015706.1015754

32. Ari Shapiro and Sung-Hee Lee. 2010. Practical Character
Physics for Animators. IEEE Computer Graphics and
Applications 31 (2010), 45–55. DOI:
http://dx.doi.org/10.1109/MCG.2010.22

33. Kwang Won Sok, Katsu Yamane, Jehee Lee, and Jessica
Hodgins. 2010. Editing Dynamic Human Motions via
Momentum and Force. In Proc. SCA ’10. 11–20. DOI:
http://dx.doi.org/10.2312/SCA/SCA10/011-019

34. Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016.
Sketchplore: Sketch and Explore with a Layout
Optimiser. In Proc. DIS ’16. 543–555. DOI:
http://dx.doi.org/10.1145/2901790.2901817

35. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and
Takeo Igarashi. 2014. Pteromys: Interactive Design and
Optimization of Free-formed Free-flight Model Airplanes.
ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10
pages. DOI:http://dx.doi.org/10.1145/2601097.2601129

36. Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and
Vladlen Koltun. 2012. Optimizing Locomotion
Controllers Using Biologically-based Actuators and
Objectives. ACM Trans. Graph. 31, 4, Article 25 (July
2012), 11 pages. DOI:
http://dx.doi.org/10.1145/2185520.2185521

37. Andrew Witkin and Michael Kass. 1988. Spacetime
Constraints. SIGGRAPH Comput. Graph. 22, 4 (June
1988), 159–168. DOI:
http://dx.doi.org/10.1145/378456.378507

12

http://dx.doi.org/10.2312/egst.20141042
http://dx.doi.org/10.1145/2980179.2982440
http://dl.acm.org/citation.cfm?id=1218064.1218092
http://dx.doi.org/10.1145/2702123.2702149
http://dx.doi.org/10.1145/2485895.2485916
http://dx.doi.org/10.1145/1015706.1015754
http://dx.doi.org/10.1109/MCG.2010.22
http://dx.doi.org/10.2312/SCA/SCA10/011-019
http://dx.doi.org/10.1145/2901790.2901817
http://dx.doi.org/10.1145/2601097.2601129
http://dx.doi.org/10.1145/2185520.2185521
http://dx.doi.org/10.1145/378456.378507

	Introduction
	Contributions

	Related Work
	Character Motion Editing
	Optimization-Based Design

	Target Problem
	Character Representation
	Animation Curve Representation
	Task Goal

	Optimization-Guided Motion Editing
	Design Goals
	OptiMo: A Proof-of-Concept System

	Basic Optimization Framework with Editability
	Parametrization
	Objective Function
	Solver Details
	Discussions

	Adding Control over Optimization
	Control by Regularization
	Control over Cost Function

	Example Usage Scenarios
	Stick Figure Waving His Arm
	Conductor for a Musical Performance
	Fox Tail

	Feedback from Experts
	Discussions
	Conclusion
	References 

