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Overview
Background and Target Problem

3



Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

Background: Parametric Visual Design is Everywhere
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… etc.

Procedural designPhoto color enhancement Generative modeling
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Background: Parametric Visual Design is Everywhere
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Problem: Need many trials and errors 

• E.g., try a different parameter combination, see the result, judge whether it is 
better or not, and then decide which combination to try next …


• This is a high-dimensional search task and can be tedious and time-
consuming
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Background: Parametric Visual Design is Everywhere

Motivation: What computational support is possible? 

Technical challenge: 

• Parameters need to be determined based on the user’s preference


• It is difficult to fully automate the parameter tweaking process
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Overview
Proposed System: Sequential Gallery
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 

Sequential Gallery: 
An interactive optimization framework 
where the user sequentially performs 
2D search subtasks via a grid interface
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…
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n design parameters  
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…
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2D search subtasks via a grid interface

2D search subtask #1
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 

2D search subtask #1

Sequential Gallery: 
An interactive optimization framework 
where the user sequentially performs 
2D search subtasks via a grid interface
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 

2D search subtask #2

Sequential Gallery: 
An interactive optimization framework 
where the user sequentially performs 
2D search subtasks via a grid interface

2D search subtask #3
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 

2D search subtask #3

Sequential Gallery: 
An interactive optimization framework 
where the user sequentially performs 
2D search subtasks via a grid interface

2D search subtask #4
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 

2D search subtask #4

Sequential Gallery: 
An interactive optimization framework 
where the user sequentially performs 
2D search subtasks via a grid interface
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…

Target: 
n design parameters  
(e.g., photo enhance)

…

Output:  
An optimal 
parameter set 

Sequential Gallery: 
An interactive optimization framework 
where the user sequentially performs 
2D search subtasks via a grid interface
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Overview
Example Usage
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Photo Color Enhancement (12D)
Brightness, contrast, saturation, shadows (RGB), midtones (RGB), and highlights (RGB)





Original photograph Enhanced photograph

(after 4 iterations)
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Overview
Summary of Contributions

21
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Summary of Contributions

• Novel algorithm: Sequential plane search 

• A variant of preferential Bayesian optimization 
(PBO), enabling user-in-the-loop optimization


• Can find optimal solutions with fewer iterations 
than the previous algorithm [Koyama+17]


• Interactive system: Sequential Gallery 

• Use the sequential-plane-search algorithm in 
combination with a zoomable grid interface


• Enable the user to effectively explore the design 
space and perform the optimization 

22

... ...

Sequential plane search

Sequential Gallery
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... ...

Sequential plane search

Sequential Gallery
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... ...

Sequential plane search

Sequential Gallery
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Problem Definition
From Mathematical Viewpoint
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Problem Definition from Mathematical Viewpoint

26

• Suppose that we have  sliders to adjust


• Let  be the search space and 
 be a set of  parameter values


• Let  be a perceptual 
preference function (= goodness function) 
which returns a goodness value


• We want to solve an optimization problem: 

n

𝒳 = [0,1]n

x ∈ 𝒳 n

g : 𝒳 → ℝ

x* = argmax
x∈𝒳

g(x)

[Koyama+, Computational Interaction (2018)] Yuki Koyama and Takeo Igarashi. 2018. Computational Design with Crowds. In Computational Interaction (Eds. 
Antti Oulasvirta, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes), Oxford University Press, pp.153—184.
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Interacting with Goodness Function

28

Absolute assessment 
should not be used:  
The user cannot directly 
answer the function value 
reliably [Brochu+10; 
Koyama+18]


Relative assessment 
should be used:  
The user can answer 
which option is better 
among two (or more) 
options

Absolute 
assessment

Relative 
assessmentA B
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Interacting with Goodness Function

30

Absolute assessment 
should not be used:  
The user cannot directly 
answer the function value 
reliably [Brochu+10; 
Koyama+18]


Relative assessment 
should be used:  
The user can answer 
which option is better 
among two (or more) 
options

Absolute 
assessment

Relative 
assessmentA B

Preferential feedback
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Interacting with Goodness Function

31

Absolute assessment 
should not be used:  
The user cannot directly 
answer the function value 
reliably [Brochu+10; 
Koyama+18]


Relative assessment 
should be used:  
The user can answer 
which option is better 
among two (or more) 
options

Absolute 
assessment

Relative 
assessmentA B

Preferential Bayesian optimization (PBO) 
can run using relative assessment (i.e., preferential feedback)
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Preferential Bayesian Optimization (PBO)
Previous Techniques and Our New Technique

32
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Basics: “Standard” Bayesian Optimization (BO)

• Is a global “black-box” optimization algorithm


• Can find optimal solutions with only a small 
number of function evaluations 

• Thus, useful to handle expensive-to-evaluate 
objective functions


• Example applications: hyperparameter tuning for 
machine learning models [Akiba+, KDD 2019]

33

See [Shahriari+, Proc. IEEE 2016] for details
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Preferential BO (PBO)

• PBO is an extension of BO, which runs with relative assessment (or 
preferential feedback), rather than absolute assessment of function values


• PBO can find optimal solutions with only a small number of preferential 
feedbacks 

• Note: human is expensive-to-query

34

Relative 
assessmentA B



xchosen = argmax
x∈{xA,xB}

g(x) xchosen = argmax
x∈"

g(x) xchosen = argmax
x∈"

g(x)

[Brochu+, NIPS 2007] 
“Pairwise Comparison” Query

[Koyama+, SIGGRAPH 2017] 
“Line Search” Query 

(Sequential Line Search)

[Ours] 
“Plane Search” Query 

(Sequential Plane Search)

Query 
type:

User 
task:

Notes: Is the first PBO algorithm Needs fewer iterations than 
[Brochu+ NIPS 2007]

Needs even fewer iterations, 
and have a good compatibility 

with grid interfaces
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Sequential Gallery Workflow
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2-dimensional search subspaces (= search planes) 
determined by the sequential plane search algorithm
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Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

… 2D search subtask

2-dimensional search subspaces (= search planes) 
determined by the sequential plane search algorithm
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… 2D search subtask

2-dimensional search subspaces (= search planes) 
determined by the sequential plane search algorithm
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… 2D search subtask

2-dimensional search subspaces (= search planes) 
determined by the sequential plane search algorithm

User’s feedback

Next search plane
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… 2D search subtask

2-dimensional search subspaces (= search planes) 
determined by the sequential plane search algorithm
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…… 2D search subtask 2D search subtask 2D search subtask

2-dimensional search subspaces (= search planes) 
determined by the sequential plane search algorithm
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…… 2D search subtask 2D search subtask 2D search subtask
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Interface: Zoomable Grid Interface for 2D Search Subtasks

53
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Interface: Zoomable Grid Interface for 2D Search Subtasks
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Benefits of Zoomable Grid Interface

61

• Allows the user to easily grasp the available 
options in the 2D subspace by just seeing the grid 
view


• WYSIWYG (What-You-See-Is-What-You-Get); do 
not need to be aware of raw parameters


• Compatibility with the sequential-plane-search task 
(i.e., 2D search)


• Minimum quantization errors (thanks to zooming 
operations)
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Sequential Plane Search
How to Determine the Next Plane in Each Iteration

62
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Criterion to Select 2D Search Planes

We want to select the most effective 2D subspace (= 
search plane) for the next query


• Effectiveness here means the degree to which it 
is worth observing in the next iteration to find the 
optimal solution


Question: How can we define the effectiveness?

63

?
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Acquisition Function in (Standard) BO

• Standard BO uses acquisition functions


• An acquisition function evaluates how 
effective a point is as the next query


• The maximizer of the acquisition function is 
selected as the next point


• We extend this point-wise acquisition function 
to evaluate how effective a search plane is 
as the next query (next slide)

64

Note: There are many variants in acquisition function definitions (e.g., “expected improvement”). Most of them can 
automatically balance the “exploration” (i.e., favor unobserved regions) and “exploitation” (i.e., favor promising regions) 
strategies, which is the magic to enable BO to be successful. See [Shahriari+, Proc. IEEE 2016] for details.
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Note: There are many variants in acquisition function definitions (e.g., “expected improvement”). Most of them can 
automatically balance the “exploration” (i.e., favor unobserved regions) and “exploitation” (i.e., favor promising regions) 
strategies, which is the magic to enable BO to be successful. See [Shahriari+, Proc. IEEE 2016] for details.
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Acquisition Function for Determining the Next Plane
• Let  be the accumulated preferential data so far obtained


• Point-wise acquisition function (used in standard BO):

 [Note 1]


• Plane-wise acquisition function (proposed):





• We choose the next plane  by solving a maximization problem:

 [Note 2]

𝒟

apoint(x; 𝒟)

aplane(𝒫; 𝒟) = ∫𝒫
apoint(x; 𝒟)dS

𝒫next

𝒫next = argmax
𝒫∈𝒳

aplane(𝒫; 𝒟)

66

[Note 1]: Refer to [Koyama+, SIGGRAPH 2017] for the definition of  in PBO; in short, it is based on the use of Gaussian process regression to 
estimate the goodness function landscape from the available preferential data.


[Note 2]: This maximization problem is differentiable, so L-BFGS can be used. Since it can have multiple local maxima, we solve this problem 
multiple times with random initialization. It takes less than one sec. in most cases, which is acceptable from the interaction viewpoint.

apoint

𝒫 x
𝒳
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[Note 1]: Refer to [Koyama+, SIGGRAPH 2017] for the definition of  in PBO; in short, it is based on the use of Gaussian process regression to 
estimate the goodness function landscape from the available preferential data.


[Note 2]: This maximization problem is differentiable, so L-BFGS can be used. Since it can have multiple local maxima, we solve this problem 
multiple times with random initialization. It takes less than one sec. in most cases, which is acceptable from the interaction viewpoint.

apoint

𝒫 x
𝒳
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[Note 1]: Refer to [Koyama+, SIGGRAPH 2017] for the definition of  in PBO; in short, it is based on the use of Gaussian process regression to 
estimate the goodness function landscape from the available preferential data.


[Note 2]: This maximization problem is differentiable, so L-BFGS can be used. Since it can have multiple local maxima, we solve this problem 
multiple times with random initialization. It takes less than one sec. in most cases, which is acceptable from the interaction viewpoint.

apoint

𝒫 x
𝒳
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Applications:
Possible Scenarios and Demonstrations
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Potential Applications

70

Photo color enhancement Generative modeling Procedural texturing

… and many other parametric design scenarios



Photo Color Enhancement (12D)
Brightness, contrast, saturation, shadows (RGB), midtones (RGB), and highlights (RGB)





Original photograph Enhanced photograph

(after 5 iterations)



Body Shaping (10D)
Using the SMPL model [Loper+15] (the first 10 principal components)





“He was of medium height, solidly built, 
wide in the shoulders, thick in the neck, 
with a jovial heavy-jawed red face […]”

Dashiell Hammett. 1930. The Maltese Falcon.
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Evaluation [1/2]:
Optimization Performance Comparison
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Performance Comparison Using Synthetic Functions
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• Goals: 

• Evaluate the efficiency of our sequential plane search 
compared to the previous work [Koyama+17]


• Confirm that BO (i.e., the use of the acquisition 
function) contributes to the optimization performance


• How:  

• Use synthetic objective functions to simulate human 
responses (shown on the right)


• Algorithms to be compared: (next slide)

Gaussian (5D/15D)

Rosenbrock (10D/20D)
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Algorithms to be Compared

79

Baseline 1:

SLS

Baseline 2:

SPS (Random) SPS (Ours)

Sequential line search 
[Koyama+17]

Sequential plane 
search, but the plane 
is randomly chosen 

(instead of using BO)

Sequential plane 
search (using BO)
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Result: Performance Comparison [1/2]
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Synthetic objective function: Gaussian function

Performance: SLS < SPS (random) < SPS (ours)

(L
ow

er
 is

 b
et

te
r)

5D 15D
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Result: Performance Comparison [2/2]
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Synthetic objective function: Rosenbrock function
(L

ow
er

 is
 b

et
te

r)
10D 20D

Performance: SLS < SPS (random) < SPS (ours)
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Evaluation [2/2]:
Informal User Study

82



Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

Informal User Study

• Participants: Six students/researchers (five novices and one expert)


• Task: Enhance photographs using our system (12D)


• Results:


• All the participants could successfully perform optimization and find 
satisfactory results in 5.36 iterations in average (SD = 2.69)


• Participants appreciated the grid view since they could get inspiration for 
possible color variations easily and quickly
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Discussions
Limitations and Future Work
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Discussions: High Dimensionality

• BO (and thus PBO, too) is inherently not good 
at handling very high-dimensional problems 
[Wang+16]


• We assumed the dimensionality is at most 20 

• To overcome the dimensionality issue, 
application-specific extensions should be made


• E.g., for generative modeling (e.g., GANs), 
[Chiu+, SIGGRAPH 2020] is a possible option 
to combine with Sequential Gallery
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C.f., A method specific to 
generative modeling  

[Chiu+, SIGGRAPH 2020]
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Discussion: Others
• Initial plane selection: we randomly choose initial planes, but other 

strategies are possible (e.g., use Design Gallery [Marks+97] for the 
first iteration and then start the sequential plane search iterations)


• Time-changing preference: we assume that the user’s preference 
does not change during the iteration, but this is not true in some 
cases; supporting time-changing preference is an interesting future 
work


• Grid resolution and zooming levels: currently, we manually select 
the grid resolution and the number of levels, but this may be adjusted 
dynamically by analyzing the just-noticeable difference (JND)


• Prior knowledge: when some prior data is available, we could build 
a rough approximation of the goodness function and then use it as a 
prior of the Bayesian inference; this would make the optimization 
even more efficient

86

Refer to the paper 
for details
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Summary
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Summary
• Sequential Gallery is an interactive system for user-in-the-loop visual 

design optimization


• Its efficiency is enabled by sequential plane search, which is a new variant 
of preferential Bayesian optimization and is able to find the solution with 
only a minimal number of iterations

88

Initial Optimized
Sequential Gallery

… …
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